

American Journal of Software Engineering and Applications
2022; 11(2): 22-30

http://www.sciencepublishinggroup.com/j/ajsea

doi: 10.11648/j.ajsea.20221102.11

ISSN: 2327-2473 (Print); ISSN: 2327-249X (Online)

Expressions for Source Control Management Systems

Marco Schulz

Marco Schulz Consulting, Puebla, Mexico

Email address:

To cite this article:
Marco Schulz. Expressions for Source Control Management Systems. American Journal of Software Engineering and Applications.

Vol. 11, No. 2, 2022, pp. 22-30. doi: 10.11648/j.ajsea.20221102.11

Received: June 21, 2022; Accepted: July 8, 2022; Published: September 5, 2022

Abstract: In the last decades, many standards were established to increase productivity during Software Lifecycle

Management. All these techniques and methodologies promise a higher success rate in software projects which could affirm

themselves in the case the involved protagonists are willing to follow the instances recommended. Semantic Versioning, for

example, addresses the information leak between functional changes, BugFixes and compatibility of existing and future

releases of artifacts. Diving deeper into the daily craftsmanship of software projects enables us to identify the Source Control

Management Systems (SCM) as a big treasure box. Much information can be extracted from these repositories, which are

currently ignored for project analyzing. Expressions on SCM Commit Messages represent a new formalism that is both human-

readable and machine-processable. Such a standard also forms a bridge between the code base and the requirements

management and release management, since these activities are identified by a freely expandable vocabulary in the SCM.

Another advantage of this strategy is the clear and compact expressiveness for development teams. A very practical aspect of

my proposal is the easy applicability of the presented solution in real software development projects. As with the Semantic

Versioning methodology already mentioned, there are no additional technical requirements to be met, since commit messages

are a fundamental function of SCM systems. This paper discusses the option to improve data collection for controlling

software projects and knowledge sharing in collaborative teams.

Keywords: Source Control Management (SCM), Configuration Management, Software Lifecycle Management (SLM),

Software Engineering, Distributed Development, Team Collaboration, Software Maintenance

I. Introduction

Thinking about SCM systems we have to keep in mind,

that since the first roll out of CVS in the early 1990‘s and

today, many things have changed. Searching the free online

encyclopedia Wikipedia, presents a page “Comparison of

Version Control Software” which contains an overview of

version control software of more than 30 SCM tools. This

gives an idea why software companies usually have around

three or more different SCM systems in work - of course the

real amount depends on how many years they are in business.

The possibility to attach every revision in SCM Systems

with a commit message allows the developer to inform other

users with a short explanation of his work. This feature is

extremely helpful by browsing the history manually in search

of special code changes. If these commit messages well

structured there exist a possibility to grab automated

information of project growth. In this paper on expressions is

introduced as solution for structured commit messages which

could processed by software and also helps developers to

resume their work more efficient.

The list of research on SCM is quite overwhelming and

covers multiple aspects. The work of Walter F. Tichy on RCS

[2] presents a deep fundamental insight into technical aspects

of SCM systems. Abdullah Uz Tansel et al. gives in his

research a brief history and builds a bridge to nowadays SCM

systems [11]. The paper of Christian Bird et al. describes the

ideas why companies deal with various SCM solutions [12].

Many existing papers like the one from Filip Van Rysselberghe

and Serge Demeyer already identified SCM repositories as a

significant information storage [5], which contains more than a

simple history of source code. The approach from Louis

Glassy to observe the growth of students in the software

development process by using SCM techniques [6]

demonstrates another method to grab implicit information

from SCM. Alongside the fundamental research in software

engineering, there exists a great resource of Blogs, articles and

23 Marco Schulz: Expressions for Source Control Management Systems

books from people who are directly involved in the topic. They

describe experiences and best practice to make the next release

come true, as referred towards the web resources in the

footnotes. A small selection of related practitioners books is

also included in the reference list.

Let us take a closer look at how processes for SCM could

be improved. For this reason, section II defines the

terminology of this paper and talks in detail about merging

and branching strategies. Section III remind some basic

knowledge on SCM and gives a simple idea about how

complex build and deploy pipelines interact. Following this

quick journey, section IV draws a picture about real problems

that occur in software development projects and explains

possible Points of Interest (POI) inside an SCM repository.

These fundamentals allow a definition of the vocabulary we

introduce in section V. A real world example will

demonstrate in VI the cardinality of the expression and gives

ideas about its usage. After all, section VII will reflect and

summarize these thoughts. The last section talks about ideas

how future work could be continued.

Figure 1. Branch and Merge.

2. Definitions

The definitions in this section are based on the English

dictionary Merriam Webster with a contextual relation to

SCM systems. The term Source Control Management System

(SCM) is applied in this paper to describe tools like CVS,

Subversion (SVN) or Git. Many other names have appeared

over the years in literature for this type of tools. All these

terms like Version Control System (VCS) or Revision

Control System (RCS) are considered as equal to each other.

Artifact “A USUALLY SIMPLE OBJECT (SUCH AS A

TOOL OR ORNAMENT) SHOWING HUMAN

WORKMANSHIP OR MODIFICATION AS

DISTINGUISHED FROM A NATURAL”.

OBJECT; “ESPECIALLY: AN OBJECT REMAINING

FROM A PARTICULAR PERIOD”. In the context of SCM,

an artifact is a binary result of the build process. Artifacts can

be libraries, applications and so on.

Repository “A PLACE, ROOM, OR CONTAINER

WHERE IS DEPOSITED OR STORED”. In software

engineering a repository denotes a managed storage. We can

distinguish repositories for source code and for binary

artifacts.

Revision “A CHANGE OR A SET OF CHANGES THAT

CORRECTS OR IMPROVES SOMETHING”. Each

successful commit from a user to the SCM represents a

change of the internal state in the SCM. These different states

are revisions. Subversion for example increments an internal

number after each commit [18]. This unique identifier is

called revision number. Git on the other hand manages the

revision number smarter and creates SHA-1 Hashes from

each commit as an identifier [15]. This brings more

flexibility for dealing with branches.

Release “TO GIVE PERMISSION FOR PUBLICATION,

PERFORMANCE, EXHIBITION, OR SALE OF; ALSO:

TO MAKE AVAILABLE TO THE PUBLIC”. A release

defines a set of functional assertions for an artifact. When all

functions are implemented, a test procedure is started to

exclude as many failures as possible. After the termination of

testing and corrections, the artifact gets packed for delivery.

To distinguish the different versions of an artifact, it gets

labeled by a unique version number. By convention, it is not

allowed to have more than one artifact with the same version

number.

Tag “A DESCRIPTIVE OR IDENTIFYING EPITHET”. -

A Tag is a label to a special revision, like a release, and is

used as bookmark.

Trunk “THE CENTRAL PART OF ANYTHING”. A trunk

is a common convention and means the main branch, where

the current development happens [17]. In Git this branch is

called master for the local repository and orgin in the remote

repository. Branching and Merging is one of the major

feature in SCM systems and also a high sophisticated

operation. It is not so unusual that developers and also

Configuration Managers struggle with this. The paper of

Shaun Phillips et al. contains a developer comment about the

dealing with SCM and the pain of merging [10].

“We are a team of four senior developers (by which I mean

we’re all over 40 with 20+ years each of development

 American Journal of Software Engineering and Applications 2022; 11(2): 22-30 24

experience) and not one of us has had a positive experience

in the past with branching the mainline... The branch is easy -

it’s the merge at the end that’s painful.”

This shows that even persons with many years of

experience need a detailed explanation of a seemingly trivial

procedure. A simple understanding how branches typically

have to be used and how they represent the evolution of a

real software project is of high relevance for this paper.

Figure 1 explains the optimal interaction between branches

and the trunk which is described by Chuck Walrad and Darrel

Strom as Branch by Release Model [3]. In addition to the

context of branching and merging there is a version tree

sample graph explained by Yongchang Ren et al. in their

paper [8].

In order to give a comprehensive explanation of the

process we assume a simple Java library project. As build

tool Apache Maven is chosen which is successfully used for

years by many different commercial and Open Source

projects. Maven defines many standards for the software

development process and implements them. Its success

feature is a highly efficient dependency management.

The information about the artifact version number is

managed in the pom.xml, the Maven build file. For this

reason the POM has our special attention. In the context of

Maven a versions number is labeled SNAPSHOT while it is

still under development. This convention allows in

collaborative teams the sharing of non official published

artifacts. After removing the label SNAPSHOT the artifact is

released. By convention it is not possible to have more than

one artifact with the same version number. In section III this

topic is discussed in more detail. For the moment it is

necessary to know that this convention takes effect in

collaborative processes. The correct way to share artifacts is

the usage of a Repository Manager. The most common

Repository Manager is Sonatype Nexus OSS which is used

for Maven Central [19] to deliver dependencies. Nexus will

refuse the request if a developer tries to publish an already

existing release of an artifact. With this infrastructure it is not

necessary to transfer binary artifacts to the SCM. This tool

chain is a simple example for a highly complex infrastructure

to build and deliver software in large companies.

In figure 1 the development starts with version 1.0-

SNAPSHOT. After the release of this version, the

development of the next version 1.1-SNAPSHOT continues

in trunk. The revision of the released version 1.0 gets

branched to fix some bugs. The branch will not be created

automatically during the release, rather it gets created when

there is a need, for example BugFixes. The branch will be

named by its minor version 1.0 to stay flexible for further

corrections. After a correct BugFix the changes get merged

back to trunk and so on. It is very important to keep in mind,

that after a release, no new functionality can be added to the

versions 1.0.X, only corrections are allowed.

The merging of failure corrections can lead to

complications if there already exist deployed versions. When

a bug is detected down to an existing version it will be

necessary to fix all following versions and increment their

version number as part of the correction. For example if there

exist released versions 1.0.2, 1.1.1, 1.2.3 & 2.0.1. and the fix

has been done in version 1.0.2 it will have to be renamed

1.0.3 for release. The merge direction is always from the

lower to the higher version which means that the version

numbers of all following involved artifacts have to be

increased. By this it can be assured that only fixes will be

exchanged and no functionality is moving form an higher to a

lower version within the merging process.

In this model the case of parallel feature development is

missing. This happens when a very complex functionality is

planned and the implementation cannot be finished in one

release cycle. This especially often occurs in agile projects

with a short time line between releases. Feature Branches

address this requirement as well. The process is a simple

extension of the Branch by Release Model. The Feature

Branch will be created from the trunk and will be named like

the feature. To test compatibility this branch at least needs to

be merged from the trunk after each release. A merge can

also be performed if the trunk provides important new

features – whenever necessary.

A very useful advanced usage of branches is the stash

command, that comes as build-in with Git. Indeed this

feature is not so common but simple and powerful. Imagine a

developer is working on some implementation with the

urgency of having to deliver a BugFix for another release. He

needs to switch his workspace to this branch but the current

work needs to be saved without a direct commit to the trunk.

The solution is create a branch and check in the current work

and hence switch the branch for the fix. After all is done he

will have to switch to the stashed branch, finish the work and

merge the result to the trunk. An often observed procedure

for developers are simultaneous checkouts of different

branches and just switching the IDE workspace. By

experience in large companies, this is very time consuming

and error prone. By the law of Murphy, the only needed

branch is the one not present in a local checkout collection.

To get in touch with branch models more profoundly, the

website of the Git SCM [20] presents different branching

workflows. Also at [21] exists a very detailed explanation for

Git branch and merge best practices.

3. Quick Survey on SCM Basics

As described, there exists a huge amount of Source

Control Management solutions. Even just picking out the

most popular systems, we are able to identify many

differences in detail. These may be the reasons why some

tools have become more popular than others. Naturally, all

of these systems do the job and are based on common ideas.

A very early and fundamental work on SCM systems done

by Tichy gives a deep insight about the Theory on how an

SCM should be constructed [2]. Today, based on the

approach of how things are done, we can classify them.

Directory and file based systems, like Microsoft Visual

Source Safe, are part of the less effective group of SCM. In

commercial environments this group has low relevance

25 Marco Schulz: Expressions for Source Control Management Systems

because quite often it causes inconsistencies of the

repository. This leads us to the category of Client-Server

solutions. Client-Server SCM systems have two

manifestations: centralizedand distributed. SVN is the most

famous representative for centralized solutions. In new

projects the choice of the day will very often be Git, a very

popular distributed SCM tool. In “Transition from

Centralized to Decentralized Version Control Systems” the

authors describes why decentralized SCM systems are

favored by developers [12]. Interviews of developers have

shown the benefits and risks of applicated SCM systems.

They deliver a well elaborated explanation why distributed

SCM has a higher learning curve. This finding is a

important principle for dealing with SCM.

SCM systems are designed to handle plain text files, like

those used for source code. After a file has undergone

configuration management and had an initial transfer into the

repository, the system stores only a delta of the changes for

every new transaction. With this requirement the repository is

more efficient and needs less disk storage. This implies

binary files like office documents should not be stored in

SCM repositories because the system cannot calculate a delta

and will always store a complete new copy of the file, if it

has been changed. A solution for dealing with binaries, like

dependencies or third party libraries, are Repository

Managers which were introduced in section II.

Figure 2. Changes in the POM, based on Semantic Versioning.

At this point some performance issues for SCM have to be

taken in consideration. This is of outstanding importance,

because it defines how a repository should be organized.

Large projects with a code repository up to 1 GB take a long

time for a checkout, even though there is only a small subset

of files that are chosen. 20 minutes and more are very

common. The reason for this effect is the size of the

repository itself. When it contains a lot of files it takes more

time to calculate the internal tree. The best solution for a high

performance repository is: Only text files and just one

independent project or module per repository.

In continuation surges question how files are represented in

a SCM. As an example we remember the small Java library

project with the Maven build logic. The build logic is

represented as an XML file and contains the entry <version>.

This entry defines the version number of the artifact and starts

with an initialization of 1.0.0-SNAPSHOT. The procedure to

increase the version number strictly follows the Semantic

Versioning. Figure 2 visualizes several steps between two

releases. For each revision a label describes the process and the

version number show the value in the POM file. This graphic

is an extension with a detailed view of figure 1.

In reality things are never like explained in theory. Initial

assumption often create a big dilemma in automation

processes when it comes to execution. It is very easy to

claim, that in a repository, the entry for version in the POM

for releases is unique. For example, it means that there

should not exist two revisions with a released version 1.0.

But where humans work, mistakes will happen. For this

reason we have the option to create tags into the SCM. Every

revision in the SCM which represents a deployed release,

will be tagged with the correct version number. Deployed

releases are defined by a successful transfer of the binary

artifact into the Repository Manager for collaborative usage.

4. Scenarios on Real Problems

We should focus our activities on special points in respect

to the evolution of software projects. It is not useful to pay

attention on each single revision. Let us highlight the Points

of Interest (POI) and why they are special. In real projects

with collaborative teams, it is quite common that a developer

breaks the current build. The good news are: when

Continuous Integration (CI) is applied in the process, these

kind of problems will be detected very quickly and can be

solved at the instance of them appearing [16]. But how a

developer is able to break a build? This occurs when the

changes get committed into the repository and some files are

not included in the commit. A repair can easily and fast be

done by adding a new commit with the missing files needed.

In this case it is very important to realize that only the one

who delivered an incomplete package is able to add the

missing parts. Problems arise when this happens on a Friday

evening and the person responsible is leaving the office for

vacations the next two or tree weeks without checking that

everything is in order, causing unnecessary pain in the

continuation of the project. These things happen much more

often than anyone would expect.

Another effect is called fast shots. These small and often

repeated commits typically change only a few lines in just

 American Journal of Software Engineering and Applications 2022; 11(2): 22-30 26

one or two files. This happens when a user for some reason is

not able to test his code or settings locally on his own

machine. A simple scenario could be the manipulation of the

CI Server build output without direct access.

A work flow for developers is the usage of particular

commits in order to preserve intermediate steps of the work

and allow an easy rollback. This procedure is only applicable

in distributed systems or in environments without

collaboration. The effect is quit similar. It will produce many

revisions inside the SCM, which could get summarized to a

single revision.

The Continuous Delivery approach for modern Web

Applications is a quite different method compared to the

classical release process [14]. This technique requires special

strategies like the Feature Toggle Pattern [22] and a highly

automated deploy pipeline. Also the usage of the SCM system is

very advanced. Each feature is developed in its own branch and

the Configuration- or Build Manager creates for each

deployment a proper Integration Branch. The biggest challenge

in this methodology are fast responses towards urgent problems

arising. In the worst case it could be necessary to push out very

quickly a new deployment with a full or partial rollback. During

deployments database changes are very critical. This aspect

could be discussed in a further paper. Databases are not

implicitly part of the SCM, but there also exist techniques [23]

to keep them under configuration management.

Figure 3. Structure of a commit naming.

As mentioned before, a release R inside an SCM is defined

by several commits to the SCM. These commits are identified

by the revision r. The lowest amount of revisions between two

release is one, but there is no limit concerning to the upper

boundary. Special Points of Interests inside an SCM are

released revisions which can formally defined by (2).

R = {r 1, r 2, r 3, r n+1,..., r x } (1)

POI: = ∆ Release (R; R + 1) (2)

By this interpretation we are able to develop metrics which

show a real project growth and do not just produce an output

[13]. The paper of P. Kaur and H. Singh contains a collection

of metrics related to their VVCT SCM [9]. An adapted

suggestion for possibilities to compare project evolution is:

1) the amount of BugFix releases in a minor branch,

2) an count of revisions between two release,

3) the growth between minor and major release (e.g. Line

of Codes),

4) a direct comparison between the current trunk and a

previous release,

5) two selected releases,

6) a comparison of an release R and its replacement.

For example the amount of BugFix releases for a minor

release allows a conclusion about the quality situation of a

project. It is very important to understand the reasons to

improve program stability and reduce the number of

BugFixes. A classification for changes is described by

Swanson [1]. An overview of the project based on these

classifications of BugFixes should detect the issues that have

to be changed to accomplish high quality.

5. A Vocabulary for SCM Commit

Messages

In the early times SCM systems were used for

synchronizing source code between developers. Typically

users were not paying too much attention to write well

formulated explanations about their changes. In many

instances they were not leaving any description about

what they did. Another extreme was that comments like

update build logic frequently appeared in the history. An

explanation of everything and nothing without saying

what was changed or why. It could either be a version

update of an existing library or the addition of a new

dependency leading to a heavy time-consuming work in

order to identify the points of interest in the commit

history. Manual checks between the version with a Diff

Tool would be necessary to locate the Line of Code that

may have to be changed again. Guidelines have been

introduced on how to write a well formulated commit

message to solve this problems. A short selection of these

guides published on the internet: [24-26] It was

discovered by companies that the approach to apply well

formulated descriptions of SCM revisions can improve

productivity in teams. By exploring new projects on

Source Code Hosting Services like GitHub or Sourceforge

the quality of commit messages was increasing in the last

years.

Based on these recommendations and the experience

gained as of today, a vocabulary should be introduced for

27 Marco Schulz: Expressions for Source Control Management Systems

writing easier and more efficient commit messages. This

simple-to-use standardization could help to visualize the

evolution of a project more clearly. By very precise and

short explanation of every revision readers do not get

flooded with information. This allows analysts to see

patterns of process leaks more quickly and increases the

team productivity. The usage of a defined structure also

allows an automatism to parse the commit messages. The

result can generate programmatic presentations of diagrams

readable by humans. Naturally this approach is not only

limited to SCM. Another usage could be for communication

in meetings with strict time limitations, for example in the

agile method Scrum.

The vocabulary for SCM Commit Messages follows a

defined structure which is shown in figure 3. The

composition contains a mandatory first line and includes a

FunctionID, label and a short specification. The second

and third line is optional and contains the TaskID from the

Issue Management System and a description of the more

detailed explanation. Our suggestion for the vocabulary

covers most SCM work flows. It may will be that some

companies need adoptions to implement this solution in

their processes. For this reason the definition is flexible

and allows extensions.

1) #INIT - the repository or a release.

a) repro:documentation / configuration...

b) archetype:jar / war / ear / pom / zip...

c) version:<version>

2) #IMPLEMENT - a functionality.

function:<clazz>

3) #CHANGE - a functionality.

function:<clazz>

4) #EXTEND - a functionality.

a) function:<clazz>

b) attach:<clazz>

5) #BUGFIX - a functionality.

priority:critical / medium / low / design

6) #REVIEW - an implementation.

a) refactor:<function>

b) analyze:<quality>

c) migrate:<function>

d) format:<source>

7) #RELEASE - an artifact.

version:<version>

8) #REVERT - a commit.

commit:<id>

9) #BRANCH - create.

a) create:<name>

b) stash:<branch>

10) #MERGE - from another branch.

a) from:<branch>

b) to:<branch>

11) #CLOSE - a branch.

branch:<name>

As first entry a FunctionID is recommended and not the

TaskID of the Issue Management. This decision is based on

the experience that functionality could spread in different

tasks. In longtime projects it could happen that for some

reason the Issue Management System needs to be replaced by

another one. Not all projects are connected to Issue

Management, especially when they are small or just a

prototype. These circumstances proved to be decisive to

define the TaskId as optional and move it to the second line.

With a FunctionID it is easier to identify parts that should be

linked. Sometimes there exist transfers into the repository

that cannot be assigned to a dedicated function. These

commits are often related to activities of the Build- and

Configuration Manager. As best practice an ID should be

established which corresponds to these activities. Some

examples related to the defined labels are:

1) [CM-00] INIT;

2) [CM-10] REVIEW;

3) [CM-20] BRANCH;

4) [CM-30] MERGE;

5) [CM-40] RELEASE;

6) [CM-50] build management.

The mightiness of this approach is its simplicity and how it

can be included in existing projects. The rule set does not

contain any additional complexity and the process is quite

easy to understand. A short example will demonstrate the

usage and a full example is provided in section VI. A change

in the POM file to update the version of the test framework

could be commented as follows:

[CM-50] #CHANGE ‘function:pom’

<QS-23231>

{Change version number of the dependency JUnit from 4

to 5.0.2}

6. Release Process

The sample project in section II is not only fictive. The

Together Platform (TP) available on GitHub [26] was

initiated to study techniques on real conditions. Hence Git is

the SCM tool of the choice. As client SmartGit is

recommended because of platform independence and it offers

plentiful advanced functionality.

For better comprehension of our approach of writing

commit expressions we use the TP-CORE project, from

initialization of the repository to its first release. No TaskIDs

for the revisions exist due to the project not being connected to

an Issue Management System. We use an excerpt of TP-CORE

to demonstrate the approach because between the initial

commit and the first published release 1.0.2 exist over 70

revisions in the repository. The project also contains a set of 12

functions which do not need to be included completely in our

sample. Only three functions were selected for demonstration:

1) CORE-01 Logger;

2) CORE-02 genericDAO;

3) CORE-05 ApplicationConfiguration.

This cuts the revisions in half and shows enough

complexity avoiding readers falling asleep.

The condition for a first release was the implementation of

all 12 functionalities. The overall test coverage has reached

more than 85%. Code smells detected with checks by

 American Journal of Software Engineering and Applications 2022; 11(2): 22-30 28

Findbugs, Checkstyle, PMD et cetera have been removed.

For an facilitate explanation, we add a revision number

before the FunctionID. TP-CORE Commit Messages:

01[CM-00] #INIT ‘archtype:jar’

{Initial the repository for Java JAR library.}

02[CORE-01] #IMPLEMENT ‘function:Logger’

{Application wide standard logger.}

03[CORE-02] #IMPLEMENT

{Generic Data Access Object Pattern for centralized

database access.}

04[CORE-05] #IMPLEMENT ‘function:AppConfigDO’

{Domain Object for application configuration.}

05[CM-10] #REVIEW ‘analyze:quality’

{Formatting, fix Checkstyle hints, JavaDoc & test

coverage}

06[CORE-05] #IMPLEMENT

‘function:ConfigurationDAO’

{Add the ConfigurationDAO implementation.}

07[CORE-05] #EXTEND ‘attach:tests’

{Create test cases for Bean Validation.}

08[CORE-01] #EXTEND ‘function:Logger’

{Add new Method to detect the configured LogLevel.}

09[CORE-05] #EXTEND ‘function:AppConfigDO’

{Change Primary Key to UUID and extend tests.}

10[CORE-05] #CHANGE ‘function:AppConfigDO’

{Rename to ConfigurationDO and define table indexes.}

11[CORE-02] #EXTEND ‘function:GenericDAO’

{Add flushTable, countEnties and optimize.}

12[CORE-05] #EXTEND ‘attach:tests’

{Update test cases for application configuration.}

13[CORE-05] #EXTEND ‘function:ConfigurationDAO’

{Update the implementation for ConfigurationDAOImpl.}

14[CORE-01] #EXTEND ‘function:Logger’

{Add method for exception handling.}

15[CORE-05] #EXTEND ‘function:ConfigurationDO’

{Add field mandatory.}

16[CM-10] #REVIEW ‘migrate:JUnit’

{Migrate Test cases from JUnit4 to JUnit5.}

17[CM-10] #REVIEW ‘analyze:quality’

{Fix JavaDoc, Checkstyle & Findbugs.}

18[CM-50] #EXTEND ‘function:POM’

{Update SCM connection to GitHub.}

19[CM-50] #EXTEND ‘attach:APIguards’

{Attach annotation for API documentation.}

20[CORE-05] #REVIEW ‘refactor:ConfigurationDO’

{FindBugs: optimize constructor parameters.}

21[CORE-02] #BUGFIX ‘priority:design’

{Fix FindBugs hint: visible modifier.}

22[CM-50] #EXTEND ‘attach:site’

{Extend MVN site configuration.}

23[CORE-02] #BUGFIX ‘priority:high’

{Fix spring DAO configuration.}

24[CORE-05] #IMPLEMENT

‘function:ConfigurationService’

{Implement basic functionality for

ConfigurationService.}

25[CM-10] #REVIEW ‘analyze:quality’

{Remove all compiler warnings, FindBugs,

Checkstyle & PMD Hits.}

26[CORE-05] #EXTEND

‘attach:ConfigurationService’

{Add JGiven test scenarios.}

27[CM-40] #RELEASE ‘version:1.0’

{Release artifact to version 1.0}

28[CM-40] #RELEASE ‘version:1.0.1’

{Change POM GroupId to Maven Central conventions.}

29[CM-00] #INIT ‘version:1.1’

{Start implementation of version 1.1.0.}

30[CM-50] #MERGE ‘from:1.0.1’

{Integrate GAV POM changes to trunk.}

31[CM-40] #RELEASE ‘version:1.0.2’

{Include PGP signing.}

32[CM-20] #CHANGE ‘function:Constraints’

{Add Constraints.VERSION to 1.1}

33[CORE-01] #EXTEND ‘function:Logger’

{Default loader for logback.xml configuration files in the

application DIR.}

Considering the previous example, we see that a

limitation to around 80 - 100 characters for the first line is

recommendable. Displaying the history with any client

could get very messy if the first line has no size

restrictions. The log output of the commit messages does

not display the branch and tag operation, a behavior of

Git. These revisions do not appear in any history list by

browsing GitHub. Revision 28 is a branch based on

revision 27. The branch is named as 1.0. Releases are

published in consonance with the convention to be

labeled, revision 31 tagged as Release 1.0.2. The revisions

28 and 31 are part of branch 1.0.

In this constellation we are able to see an important detail

for dealing with branches. A branch will only be created

when it is necessary. Usually BugFix branches do not have

their own build plans on CI Servers and are managed

manually. The primary arguments for this practice are to

reduce the administrative overhead for the CI Servers.

Companies that orchestrate their applications by web services

or modules loose capacities by binding their recourses in this

kind of activities.

7. Conclusion

“There is nothing permanent except change.” - Heraclitus

The whole infrastructure of commercial software projects

contains a lot of independent fragments which share

information over all development cycle. In projects we are

overloaded by documentation production processes. The high

amount of all this information inhibits profoundly

comprehension and handling capabilities. Applications are

getting more complex and bigger resulting in the necessity to

establish more efficient ways to deal with information

accumulation. There exists a giant overhead of managing

documents like release notes, release plan, issue

management, quality reports, statistics & metrics,

documentation, architectural documents and BugFix lists.

29 Marco Schulz: Expressions for Source Control Management Systems

Typically each tool stores its data in its own structure. This

makes changes to other tools, that might fit better, risky and

expensive.

Companies know the effect that developers feel

uncomfortable having to track their work in Issue

Management tools like JIRA resulting in them trying to hide

their part of the work flow as much as possible. Tasks will be

opened up when they are almost done or already finished.

The information on how many project days were spent for a

function covers more the expectations and less the reality

with the intent that developers can escape a bit from the daily

pressure of productivity. Often developers are forced to

spend their time with data acquisition for management

controlling instead of programming resulting in low cost

efficiency of a project and even additional and unplanned

costs. Developers dislike this kind of activities because it

keeps them away from their actual work: development. This

is what makes the simple approach towards human readable

and machine processable commit messages attractive and

more convenient. The most important fact is that no extra

costs are generated applying this method to existing

processes.

We are enabled to generate several reports based on real

data if SCM repositories can be populated with additional

information. Impact assessments could be more efficient and

accurate when they are created by facts and not emotionally

blended.

8. Future Work

The idea to make information inside SCM systems more

transparent is not just limited to commit messages.

Another obvious point for future research is the history

command. In the paper of Abram Hindle and Daniel M.

German a query language for source control is introduced

[7]. The idea of SCM Language could be picked up and

transformed applying it to a specific solution. This work

would use the Domain Driven Development paradigm to

model an own SCM language based on Domain Specific

Language (DSL) concepts - leading to the discovery of

real world DSL solutions allowing for quick construction

of a viable prototype or application based upon certain

specifications.

Also a point which boldly comes to mind after reading the

paper of Fischer et al., is the inclusion of released

information into SCM [4]. This approach should not fully be

automated due to its requirement of an advanced knowledge

about branching and merging. A small self written extension

could be a probable solution. A short tutorial

for Git suggests

certain possibilities.

Acknowledgements

Special thanks to Joachim Reiter and Harald Kaufmann for

spending their time to review this document. Their feedback

was very productive.

References

[1] E. Burton Swanson, 1978, The Dimension of Maintenance.

[2] Walter F. Tichy, 1985, RCS - A System for Version Control.

[3] Chuck Walrad and Darrel Strom, 2002, The Importance of
Branching Models in SCM.

[4] Michael Fischer, Martin Pinzger, Harald Gall, 2003,
Populating a Release History Database from Version Control
and Bug Tracking Systems.

[5] Filip Van Rysselberghe and Serge Demeyer, 2004, Mining
Version Control Systems for FACs (Frequently Applied
Changes).

[6] Louis Glassy, 2005, Using version control to observe student
software development processes.

[7] Abram Hindle and Daniel M. German, 2005, SCQL: a formal
model and a query language for source control.

[8] Yongchang Ren, Tao Xing, Qiang Quan, Ying Zhao, 2010,
Software Configuration Management of Version Control
Study Based on Baseline.

[9] Parminder Kaur and Hardeep Singh, 2011, A Model for
Versioning Control Mechanism in Component- Based
Systems

[10] Shaun Phillips, Jonathan Sillito, Rob Walker, 2011, Branching
and merging: an investigation into current version control
practices.

[11] Abdullah Uz Tansel and Ali Koc, 2011, A Survey of Version
Control Systems.

[12] Christian Bird et al., 2014, Transition from Centralized to
Decentralized Version Control Systems A Case Study on
Reasons, Barriers, and Outcomes.

[13] Norman E. Fenton and Shari Lawrence Pfieeger, 1997, PWS
Publishing Company, Software Metrics - A Rigorous and
Practical Approach 2nd Edition, ISBN O·534·95425·1.

[14] Jez Humble and David Farley, 2010, Addison-Wesley,
Continuous Delivery: Reliable Software Releases through Build,
Test, and Deployment Automation, ISBN 0-321-60191-2.

[15] Scott Chacon and Ben Straub, 2014, Apress, Pro Git 2nd
Edition, ISBN 978-1-4842-0077-3.

[16] Mike Clark, 2004, The Pragmatic Bookshelf, Pragmatic
Project Automation, ISBN 0-9745140-3-9.

[17] Dave Thomas and Andy Hunt, 2003, The Pragmatic
Bookshelf, Pragmatic Version Control with CVS, ISBN 0-
9745140-0-4.

[18] Mike Mason, 2010, The Pragmatic Bookshelf, Pragmatic
Guide to Subversion, ISBN 1-934356-61-1.

[19] Sonatype Inc. (2017), Maven Central,
https://search.maven.org

[20] Git (2022), Git Documentation https://git-
scm.com/book/en/v2/Git-Branching-Branching-Workflows

[21] Vincent Driessen (2022), Git Flow, https://nvie.com/posts/a-
successful-git-branching-model/

 American Journal of Software Engineering and Applications 2022; 11(2): 22-30 30

[22] Martin Folwer, (2022), Feature Toggles,
https://www.martinfowler.com/articles/feature-toggles.html

[23] Red Gate Software Ltd. (!999), Database Versioning,
https://flywaydb.org

[24] Cris Beams (2022), Writing Git Commit Messages,
https://chris.beams.io/posts/git-commit/

[25] Who-T (2009), On Commit Messages, http://who-
t.blogspot.mx/2009/12/on-commit-messages.html

[26] Microsoft (20), GitHub Open-Source repository,
https://github.com/ElmarDott/TP-CORE/

Biography

Marco Schulz, also kown by his online identity Elmar Dott is an independent consultant in the field of large Web

Application, generally based on the JavaEE environment. His main working field is Build-, Configuration- &

Release-Management as well as software architecture. In addition his interests cover the full software development

process and the discovery of possibilities to automate them as much as possible. Over the time of the last ten years he

has authored a variety of technical articles for different publishers and speaks on various software development

conferences. He is also the author of the book "Continuous Integration with Jenkins" published 2021 by Rheinwerk.

