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Abstract: Based on the modification of some assumptions in the traditional Black-Scholes option pricing model, we
construct a model that is closer to the real financial market in this paper. That is to say, in order to make up for the shortages of
using the standard Brownian motion to describe the underlying asset price, we use fractional Brownian motion to replace the
standard Brownian motion in the traditional Black-Scholes model. At the same time, we assume that the interest rate satisfies
the Vasicek interest rate model under fractional Brownian motion. Under the above market model, we use the stochastic
analysis method under fractional Brownian motion to obtain the pricing formulae of European simple option and complex
option, which generalize the existing conclusions. It is not only can be closer to the actual financial market but also make the
research more practical. In addition, since the sensitivity analysis of options refers to the sensitivity or response of options to
the change of its determinants, we use numerical methods to analyze the impact of the stock initial price, the chooser date and
Hurst parameter on the price of European complex chooser option, which not only verifies the rationality of the pricing
formula but also has guiding value for option trading.
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. problem when the stock price follows a continuous generalized
1. Introduction exponential O-U process model.

In the above model, the interest rate is a constant or a
definite function of time. However, in the real financial
market, the interest rate presents randomness, such as the
equilibrium interest rate model and the no arbitrage interest
rate model [6]. Reference [7] used the partial differential
equations models to study the pricing of European gap
options under the stochastic interest rate model. Reference [8]
studied the pricing of wvulnerable options under the
jump-diffusion model with the random interest rate.

In recent years, a large number of empirical financial
studies have shown that the stock price process has
characteristics such as long-term dependence, autocorrelation
and "spikes and thick tails". The fractional Brownian motion
not only has the above characteristics, but also makes up for
the lack of using the standard Brownian motion to describe

The chooser options are a kind of strange options that the
option holders choose the option as call option or put option at a
certain time (i.e. chooser date) during the validity of the option.
According to whether strike price and maturity date of the
underlying options are the same, the chooser options can be
divided into simple chooser option and complex chooser option.
In addition, the chooser options can be divided into American
option and European option according to whether the underlying
options can be exercised in advance. At present, many scholars
have been devoted to the study of the pricing of the chooser
option. In 1991, reference [1] gave the pricing formula of
European standard chooser option under the Black-Sholes model.
In 2009, reference [2] discussed the pricing problem of American
chooser option. Reference [3] used insurance actuarial method to
derive the pricing formula of post-determined option. Reference |
[4] considered the chooser option pricing of the underlying stock ~ the underlying asset price. In addition, when H=—, the

. . . o 2’
price that safisfies the Heston stochastic volatility model. fractional Brownian motion is the standard Brownian motion.
Reference [5] studied the complex chooser option pricing

In reference [9], the pricing formula of European complex
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chooser option is given by using quasi-martingale pricing
method with the fractional Brownian motion. Reference [10]
studied the pricing of compound options with the random
interest rate under the fractional Brownian motion.

In this paper, we consider the stock price obeys the
stochastic differential equation under the fractional Brownian
motion, and the interest rate obeys the Vasicek interest rate
model. By using the stochastic analysis theory, we get the
pricing formulae of European simple chooser option and
complex chooser option, and generalize the existing pricing
model, which can be closer to the actual financial market and
make the research more practical.

2. Preparatory Knowledge

Definition 1 [11] Letsq, 7,(F),.,, P} be a probability space and

1202

H 0(0,1) be Hurst parameter. If {B, (1) : r > 0} satisfies the following
conditions, then the continuous Gaussian process {B,,(¢):¢ > 0} is

called the fractional Brownian motion with Hurst parameter:
1) If B, (1) =0, then E[B, ()] =0,(20),

2) BB, (0B, ()=l " +[5 " = [1=5 "),

where E[.]is the expectation about probability measure p.
Lemma 1 [12] If (x,v) ~ N(u,5), where

Hoys o, po,o,

2
H poo, o

1dk  —b+ pt, +cov(X,Y
1) E[eXI()'zh}]:eA 27 N(M

o,
Ele" N@ ) 3]
—b+4ty +cov(X.Y)
o} K 1 2
=2 | N@0, % by +eov(X V) —=e T dv!,

£ Neys
where N(+)is the distribution function of the standard normal

H=( ), then

)

2)

distribution, and g(v) is the function of the random variable v .

3. Market Model

Assuming that there are only two kinds of assets in a
continuously tradable, frictionless and arbitrage-free financial
market, one is risk-free assets (such as bonds), the other is risk
assets (such as stocks). The stock price and interest rate meet
the following stochastic differential equations respectively

ds(r) = SO(r(r) — q)dt + 0,dB" (1)], (1)
dr(t) = k[6 - r(t))dt + 0,dB (1), 2)

where 4> 0,0, >0 are constants, which respectively represent

the dividend rate of continuous stock payment and the
volatility of stock price; «,6, s, are constants, and k is the mean

regression speed of interest rate; (7 (r),r > 0y and (7 (s),s = 0} are
independent fractional Brownian motions on the risk-neutral
measurement Space (Q, F,(F),,,, P) -

Lemma 2 [10] The solution of the stochastic differential
equation (1) is

S@) =S(0)exp{Jﬂl r(s)ds —qt —%aftz” +0,B" (1)} 3)
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Lemma 3 [13] The solution of the stochastic differential
equation (2) is

r(s) =r(t)e" ™ + kHJ” &M du+ UZJ” ™M dBY (u),(0<t <) 4)

Lemma 4 [14] The call option price with maturity at time7;
and strike price g, is Cp . (t.S(1))at times, the put option price
with maturity at time T, and strike price K, is P (£.5(1) attimer,
then there is a unique §”, such that

Cp i (T.S)= P, (T,S),(TST,TST). (5)

Theorem 1 Under the market model (1) (2), the pricing
formulae of European call option and put option with maturity
at time 7 and strike price K at time 40 < < 7) are

C(t,S()=St)e """ N(d,) - Ke_méa% N(,), (6)

D+% i

P(t,S@)=Ke " N(=d,)=S(0)e " "N(=d)), )
where

M _ _ l 2 m2H _ 2H
dzln X +D-q(T t)+20'1(T ) (8)

1 >
Jor " ="+ a;

d: :dl _ [a.lz(Tzu —t2”)+0';, (9)
(10)

D= J‘[T r()e" ™ ds + k@J:T J‘; "™ duds,
o} =20} [ ([ & ds)u" du. (1)
Proof: According to the theory of risk neutral pricing, the

price of European call option with maturity at time 7 and strike
price k at time ;0 << 1) is

C(t,5(1)

el (s -5 (12)
= E[eij" IV(A\)(A\S(T)I <s(r)z/<;] - E[eij" ’(AMAKI {S(T)EK}]
L¢-C,

From Lemma 2 and Lemma 3, we get that

S(T)=S@expl| ’r(s)dv—q(r—n—%cr.’(ﬂ”—f”>+a‘(8‘”<r>—3.”<t»}, (13)

J /T r(s)ds = I’T r(t)e" ™ ds + kHI’T J ,S " Pduds + o, I’T LT " ®dsdBy (u). ( 1 4)

Let
X =0,(B/(T)- B (1)), (15)
Y=o, j’r jT MR dsdB (), (16)
Z=X+Y, 17)
o} =20a: [ ([ " dsy ", (18)
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D= I,T r(t)e"  ds + kﬁj,r I ’5 e duds, (19

d=n=X__p+ +q(T-t)+— a(T”’ .

50) (20)

Since {8/ ().t 20} and {B; (t),t =2 0} are independent of each other,

Xand?Y are independent of each other. We have that

X ~N(0,0>(T* = £1y), 21)
Y ~N(0,0%), (22)
Z~NQO,0X (T ")+ ), (23)
cov(X,Z)= o (T -, 24)
cov(Y,Z)=0; (25)
So
S(T)2K = Z2d. (26)
Using Lemma 1 (1), we get that
C, = S(0e " "IN(d,), 27
where
S(t)

+D-q(T-1)+— J(T”’ £
dl= : (28)
N )+m

In the same way, we can get that
C, = Ke"”%”%N(dz), (29)

where
d,=d, -\ (T -+ 2.

Therefore, the pricing formula for European call option at
times(0<r<7T)is

(30)

—p+lg?

C(1,5() = S()e*"ON(d,) - Ke 27 N(d,). (31)
According to the parity relationship between European call

option and put option, the pricing formula of European put

option at time #(0 < ¢ < 7') can be obtained as follows

P(t,5(1)) = Ke*D%”iN(—dz) -S(e T ON(=d,).  (32)

4. Chooser Option Price Under The
Vasicek Interest Rate Model

Assuming that European call option and put option with
maturity at time 7,7, respectively and strike price x kx,
respectively. We note that7 <min{7],7,} is the chooser date of

European chooser option. According to the definition of
European chooser option, the income function of chooser
option at time 7 is

WL, S(T)) =mex{Cy o (TSI, B, 1 (TS} (33)

4.1. The Pricing of European Simple Chooser Option

If T=T7,=TandK =K, =K, it is called European simple
chooser option.
Theorem 2 Under the market model (1) (2), the pricing
formula of European simple option at time #(0<¢<T)) is
cco(t,8(1))

1 5
+

=S(e " TONd,) -Ke 2" N(d,) (34)
ke U N(=d,)-S(t)e " "N(~d,),
where
S(l)

+D-q(T - z)+ ch(T’” )
d = , (35)
NERtaEr )+a§

d,=d - ,Uf(Tz"—tZ”)+0',2,,

S(t)+D (T-n+- JZ(TH )—la2
d,= ! 27 @37)

(36)

\/Ul (T(zu t2”)+0'

(38)
D= L" (1)t ds + kejl" [ e tduas, (39)
o; = 2HJ§I}T (LT M dsy u* ' du, (40)

0';7' = 2H0'22 II’I (L’ eku—ksds)ZuZH'ldu + ZHO'ZZ L’ (LT ek“_kjds)zl,{ZH"du, (4 1)

oy, =2H

Y

a'zzjf (LT eku—kvdS)ZuZH—ldu. (42)

Proof: According to the theory of risk neutral pricing, the
parity relationship between European call and put option, and
formula (33), we get that.

cco(t,5(1)) = Ee [ max{Cy (T, S(T.)), £ « (T, S(T.))}]

_ E[e_'[f ¢ r(s)ds

max{C; (T,

T
r(s)ds

— E[e_j’
- E[ei'['

r
r(s)ds

(S -K) 1+

ST, Cr (T,

Cp o (T, S(T)]+E e_I' " max {0, Ke

-p+ta?
ST +Ke 2T =S@)e T

L (43)
D| +EUH _S(T-;)e—q(T—T; )}]

+lcr,2,
"max{0,Ke 2 = S(1)e T,
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where
D, = I: r(1)e" ™ ds + kgLT J‘; " duds, (44)
o, =2H0; J‘[T‘ (J: e dsy utdu+2H o} JTT (IT R dsy u du. (45)

Obviously, the first item in formula (43) is the price of
European call option with maturity at time T and strike price X,
which the calculation result has been given by formula (6).
The second item in formula (43) is the price of European put
option with the maturity at time 7., strike price Ke’D\*%‘f;w and the

-q(T-T,)

underlying stock price S(Z,)e , which the calculation result
has been given by formula (7), i.e.

1
=

Ele % maxio, ke "2 - S(T)e Ty

dy=d, = \Jo} (T -+ oy, (48)
D, = J-/T‘ r(t)e" *ds + kHLT‘ J-; e " duds, (49)
Ufz = ZHUZZJ./T‘ (J‘T‘ e ds) u "\ du. (50)

Therefore, the pricing formula of European simple chooser
option at time (0 <¢<7T) s

cco(t,S(1))

=S()e " ""N(d,) —Ke_mEU;N(dz) (51)
—prlaz vl

+Ke 2" 2" N(=d,)=S(t)e """ N(=d,).

4.2. The Pricing of European Complex Chooser Option

If 7, #T,ork, #K,, it is called European complex chooser

-p+iod -p,+lod (-1} —q(T.m
=Ke "7 N (=d,) - S()e T ON (=) (46)  option.
= ke N () - S0 TN (~d,) Theorem 3 Under the market model (1) (2), the pricing
formula of European complex option at time (0 <¢<T) is:
where
& — — l 2m2H _ 2H _l 2
d~:ln X +D-q(T t)+20'|(71 ) 2c7yl, (47)
' Jor T - v o)
CCO(t,S(t))
=S ~a(h=t) g7 b -K 73'%17;%0’2"]\] b.: +K 732%73%052]\[ —-a..=b,: -S (LN (=g =b.: (52)
e (a,b;0)~Ke (ay,0,;p¢) + K,e (=ay,=b,;0,) = S()e (=a,,=b;; py),
where
030 g—g(r -n+ Loz -
4 =—3 2 : (33)
Jor (I =)+ o
a,=a, =0 (I;" =) + oy, (54)
s g g1,y Lo - o)
b =— K 2 i (55)
Jo (@ =iyl v g
b, =b, _\/Ulz(leu —tZ”)+ 0.5 +U; , (56)
lnM+Bz -q(T, —t)+laf(T22” -
b=—Ka 2 , (57)
\/U'IZ(TZZ" —tZ”) +0';7 +0.32
b, =b,=\Jo (I} ")+ 0} + 0}, (38)
p = ,
! \/O.lz(nzy_tw)_‘_a.i_'_a.é (59)
O (T -t + oy
P, = , 60
@ g (60)
B= IT‘ r(t)e"ds +k9jr‘ jse"””“‘duds, (61)
B, = LT‘ r(t)e ®ds + kHLT' f "™ duds, (62)
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7, _ Tops o
B, ZI Tr(t)e" ™ ds +k67] 2[ "™ duds,
t t t
2 -9 2 (T (T ku-ks g N2, 2H-1
o, =2H0, , (| e " ds)yu" "du,
u
2 _ 2 (% (T ku—ks g N2, 2H-1 200 (T hu—ks g N2, 2H-1
a: —2H02'f( (j'r & ds Y u du+2H02jT (j’ sy u? " du,
Uf’: = ZHJZZJ‘I: (J‘TI " dsy u " du +2HJ§J‘TI} (J’z " ds) u*du,

N(x,y; p)is the cumulative distribution function of the two-dimensional standard normal distribution.
Proof: According to the theory of risk neutral pricing, formula (33), Lemma 4 and Theorem 1, we have that

CCO1,5(1))

%
#(s)ds

= E[eij‘ " max{Cy . (T, ST, Py i (T, S(T )}

—(" r(s)ds
=l ST oy + P (ST, ]

15
D39}

- ke NG (1, T K )

—ge ST )e TN, (T T K )

S(T)25"} asmzf}]

~[*Hs)as -p,+La} ~[r(s)ds
BT K N LK), o Bl DS N (T T K )

S(T,)<5"} (S(7,)<8") ]

2L -L+1,-1,

where
D = JTT r(t)e" M ds + k@ LT f " duds,
D, = J: r(t)e" ™ ds + kHJ-: J.; & duds,
o =2 ey
03 =203 [ ([ sy s + 21 [ [ sy s
Let

B= IT (6 ds + k6 jT [ e duas,

*

d =SB g(T, ~0) 4~ o2 (T =),
S(?) 2

X =0,[B/(T,)- B (1))
Y=o, j}r‘ ) T M dsdB! (),
Z=X+Y,
;=20 [ ([ ¢ F sy du.
Since X and Y are independent of each other, there are
X ~N(0,07(T" =),
Y ~ N(0,07),
Z~NQO,07(T" -1")+ay),
cov(X,Z) =g} (T" =),
cov(Y,Z)=0;.
So

S(T)=2S" = Z2d,

23

(63)
(64)
(65)

(66)

(67)

(68)
(69)
(70)

(71)

(72)

(73)

(74
(75)
(76)

(77

(78)
(79)
(80)
(81)
(82)

(83)
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S(T)<S" = Z<d.
1) Firstly, we compute /,,7,.

—J"T‘ r(s)ds

1, =Ele S(T)e " "N(d,(T.,T,,K))

{8(1.)28" >]

4T -0)-+a? (124

=ste " R N T T K )
Using lemma 1 (2) to transform ¢ (7,7, k,) equivalently as follows.

41T, K))
S8t 5y = (1, - 1)+ L 0P (17 27 4+ 2

1

Jor T -1 v o

ln%+31 -q(T, —t)+%a,z(T12” =27+ = o (T} - ")+ 0] Z '+ cov(X,Z)

- 1

Joi @ -1 v o}

S(t) W _ o
+B, - T—t+ cT Vi 3 3 3
q( ) ( )_ lal.(T(ZH_t.H)_'_U;
B \/a (" - )+a;, +0oy \/U,Z(T,“” -+ o}

+oy

\/1 ~ UIZ(TLZH _IZH)+U)Z,

o1 -+ o} + oy
- b-pZ
\]l _plz

where

15;2)+B —q(T =0t a(T’” )

b =

B

\/J (L ="y +a; +oy

- ATTT o
L@ -t ea g

B = J‘I” r(t)e" Mds + kHJ.,” J/ "€ duds.

We have that

o f>j —d+cov(X,Z) b ,DIZ'
1, = S(0)e™ " [V @27 =2Tyeay e 2 N( Ydz'
N2 [ —p]
=S()e " N(a,,b;p,),
where
030 g g1 -0+l o 1 -1
lll =
o @2 =i+
Since
- r‘r(s)dv Yy
1, =g’ S(T)e ™= T ON=d (T T KO o

similar to the calculation process of /,, we get that
[4 = S(t)eiq(Tf/)N(_al 5 _b3 3P, ),
where

R (Gl LA

by = 2 s
\/O'IZ(TZZ” —t2”)+0' +U'

Jo @ ")+ o

Jo @ ="y ai oy

P =

(84)

(85)

(86)

87

(8%)

(89)

(90)

C2))

92)

93)

94

95)
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_ [k ki—ks 7., LS hu-ks §
B,= [ r()e"ds + k[ " [ ¢ duds. (96)
2) Now, we compute /,, /5.
—j/‘ F(s)ds -D, +%af|
I,=Ele” ~ Ke N(d(T. T, KD g1 o))
-B, +l0'2 l (97)
=Ke 2 Ele N(dy(T, T KO sy
Using lemma 1 (2) to transform 4,(7.,7,, k,) equivalently as follows.
d,(T,,T,,K,)
B R R T R R G U R
) N @ -1 vy
. |n%+ﬁ‘ —q(T, *m%af(rf” ST ) = (G (T =T )+ 03) ~or (17 =177 ) + 0} 2+ cov(-Y . Z)
B N @ -1 v
ln‘ii’)+3‘—q(z—1)+%aﬁ(rﬁ”—1”’)—[:75(:”’—;1”)+af+zr;"] (98)
Jol @ - ol v a) -\/175(73” ")+ al +a} z
o (1M -+ g}
- b,-pZ'
where Therefore, the pricing formula for European complex
chooser option at time#(0<¢<T.)is
b,=b =G (I~ 07 40 (99)
CCow,S@))
We have that = SO ON (b p) - K 2 Naybyi o) (105)
+ K 2T T Ny by ) = S0 TN (=ay by ).
o (100) 43, Inference
- Kle-b‘l +EU)Y +EU),I N(az’bz;pl ),
Inference 1 When - 0,6=0,0, =0, Theorem 2 is the result
where of Theorem 5 in reference [15]. Especially, when ,_1
2
a, =a, =0 (T -+ 0, (101)  Theorem 2 is the result of reference [16].
Inference 2 Whenk — 0,6=0,0, =0,4=0, Theorem 3 is the
Since result of Theorem 1 in reference [9]. In particular, when , - 1,
2
2 1, . ..
1= E[e’fv O g N (TLT,, E i oo 1 (102)  Theorem 3 is the pricing formula of European complex
‘ options under the standard Brownian motion.
similar to the calculation process of /,, we get that
o 5. Numerical Analysis
—B,+—0y +—0y,
I,=Ke * ?°N(-a,,-b,;p,), 103 . . . .
2o (wa,=b;3,) (103) In this section, we use numerical methods to explain the
where influence of the initial stock price 5, the chooser date 7 and
Hurst parameter # on European complex chooser option price.
—_ 2H 2H . .
b, =b, ‘\/ g (" -r")+oy +0y . (104)  The parameter values in model (1) (2) are shown in Table 1.
Table 1. Parameter values in model
Parameter K, K, T, T, t T q 04 k [ gy
Value 100 90 4 5 0 0.05 0.02 0.4 2.4 0.03 0.1

Table 2 compares the option prices under the fractional
Black Scholes model (see [15]) and the Vasicek interest rate
model when the chooser date of complex chooser option is
1 =2. Compared with the pricing formula under the fractional

Black-Scholes model, the pricing formula derived by
Theorem 3 in this paper that considers the mean reversion of
interest rate, which makes the pricing result more consistent
with the real financial environment. It can be found that the
option price obtained by Theorem 3 has great differences with

the pricing result of reference [15], that is to say, the result of
the Vasicek interest rate model is higher than the fractional
Black Scholes model. In addition, when Hurst parameter is
determined, as the stock price g increases, the price of chooser

option decreases first and then increases, which is beneficial
for option holders to buy or sell stock at an appropriate time.
Finally, when the stock price s, is determined, as Hurst

parameter increases, the price of chooser option increases.
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Table 2. Comparison of the influence of stock price S, on option price CCO

Fractional Black-Scholes Vasicek
Stock Price

H,=0.3 H,=0.5 H,=0.7 H,=0.3 H,=0.5 H,=0.7
30 43.9429 45.9352 48.8785 58.8408 60.3617 63.9781
40 37.0911 40.6834 44.8456 51.3769 54.8254 60.3052
50 32.0754 37.2571 42.5435 45.5959 51.1685 57.7804
60 29.0892 35.6296 41.9106 41.6870 49.1123 56.2059
70 28.0898 35.6595 42,7778 39.5570 48.3925 55.5405
80 28.8933 37.1502 44.9390 39.0622 48.8148 55.7819
90 31.2555 39.8931 48.1909 39.9981 50.2416 56.9181
100 34.9237 43.6906 52.3511 42.1768 52.5684 589151
110 39.6646 48.3671 57.2636 45.4282 55.7076 61.7205
120 45.2750 53.7722 62.7983 49.6012 59.5799 65.2698

Taking stock price s, = 80 for example. Figure 1 analyzes the
influence of chooser date 7 on the price of complex chooser
option. It can be found that when 7 changes from 1.1 to 2, as

Hurst parameter A increases, the price of complex chooser
option increases.

Option Price
FN
(4]

N g
S =

0d DN e 1A
= 12

Hurst Parameter 1 Chooser Date

Figure 1. The influence of chooser dater and Hurst parameter 1 on option

price cco under the Vasicek Model.

6. Conclusion

In this paper, we consider two cases: interest rate is stochastic
and asset price is stochastic differential equation driven by
fractional Brownian motion. The rationality of Theorem 3 is
verified by numerical analysis. The results show that Theorem 3
can be used to solve the option price of European complex
chooser option when the interest rate and stock price are
stochastic differential equations under fractional Brownian
motion, and generalize the conclusions in some literature,
which makes the option price closer to the actual financial
market and has guiding value in option trading.

References

[1] Rubinstein M. Options for the undecided [J]. Risk, 1991, 4 (4):

43.

(2]

(3]

(4]

(3]

(8]

(9]

[10]

[11]

[12]

[13]

[14]

Detemple J, Emmerling T. American chooser options [J].
Journal of Economic Dynamics Control, 2009, 33 (2):
128-153.

Xuehui Bi, Xueqgiao Du. Actuarial pricing of post-determined
options [J]. Journal of Hefei University of Technology, 2007,
30 (5): 649-651.

Guohe Deng. European chooser option pricing and hedging
strategy based on Heston model [J]. Journal of Guangxi
Normal University (Natural Science Edition), 2012, 30 (3):
36-43.

Jiangjiang Dong, Kai Gao, Xueru Liu. Complex chooser option
pricing for continuous O-U process [J]. Journal of Nanjing
Normal University (Natural Science Edition), 2018, 42 (2):
16-22.

John C Hull. Options, futures and other derivatives [M].
Beijing: Machinery Industry Press, 2011.

Yan Zhang, Shengwu Zhou, Miao Han, Xinli Suo. European
gap option pricing under Vasicek stochastic interest rate model
[J]. College Mathematics, 2012, 28 (4): 98-101.

Sang Wu, Chao Xu, Yinghui Dong. Pricing of vulnerable
options under jump-diffusion model with random interest rate
[1]. Journal of Applied Mathematics, 2019, 42 (4): 518-532.

Yingxin Zhan, Yun Xu. Pricing of European complex chooser
option under fractional Brownian motion [J]. Mathematical
Theory and Application, 2010, 30 (3): 78-82.

Shucai Yang, Hong Xue, Xiaodong Xue. Fractional compound
option pricing model with stochastic interest rate [J]. Journal of
Harbin University of Commerce (Natural Sciences Edition),
2014, 30 (1): 98-102.

Ciprian Necula. Option Pricing in a Fractional Brownian
Motion Environment [J]. Pure mathematics, 2002, 2 (1):
63-68.

Zhang S, Yuan S, Wang L. Prices of Asian options under
stochastic rates [J]. Applied Mathematics- A Journal of
Chinese Universities, 2006, 21 (2): 135-142.

Jie Lin, Hong Xue, Xiaodong Wang. Pricing model of gap
options under fractional Brownian motion [J]. Journal of
Harbin University of Commerce (Natural Sciences Edition),
2012, 28 (5): 616-619.

Korn R, Korn E. Option Pricing and Portfolio Optimization
[M]. New York: American Mathematical Society, 2000.



International Journal of Theoretical and Applied Mathematics 2020; 6(2): 19-27 27

[15] Shaoqun Liu, Xiangqun Yang. Pricing European contingent [16] Songnan Chen. Financial engineering [M]. Shanghai: Fudan
claims under fractional Brownian motion [J]. Chinese Journal University Press, 2002.
of applied probability and statistics, 2004, 20 (4): 429-434.



