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Abstract: In a Hilbert space setting, we introduce dynamical systems, which are linked to Newton and Levenberg-Marquardt
methods. They are intended to solve, by splitting methods, inclusions governed by structured monotone operators M = A+B,
where A is a general maximal monotone operator, and B is monotone and locally Lipschitz continuous. Based on the Minty
representation of A as a Lipschitz manifold, we show that these dynamics can be formulated as differential systems, which
are relevant to the Cauchy-Lipschitz theorem, and involve separately B and the resolvents of A. In the convex subdifferential
case, by using Lyapunov asymptotic analysis, we prove a descent minimizing property, and weak convergence to equilibria of
the trajectories. Time discretization of these dynamics gives algorithms combining Newton’s method and forward-backward
methods for solving structured monotone inclusions. The Levenberg-Marquardt regularization term acts in an open loop way.
As a byproduct of our study, we can take the regularization coefficient of bounded variation. These stability results are directly
related to the study of numerical algorithms that combine forward-backward and Newton’s methods.

Keywords: Monotone Inclusions, Newton Method, Levenberg-Marquardt Regularization, Dissipative Dynamical Systems,
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1. Introduction

Throughout this paper, H is a real Hilbert space with
scalar product 〈., .〉 and norm ‖ · ‖. As a guideline of our
study, we use the Newton-like dynamic approach to solving
monotone inclusions which was introduced in [7]. To adapt
it to structured monotone inclusions and splitting methods,
this study was developed in [7], [6] , [2] and [5], where
the operator is the sum of the subdifferential of a convex
lower semicontinuous function, and the gradient of a convex
differentiable function. We wish to extend this study to a
non potential case, and so enlarge its range of applications.
More precisely, we are going to consider some discrete
and continuous Newton-like dynamics, which aim at solving
structured monotone inclusions of the following type

∂Φ(x) +Bx 3 0 (1)

where ∂Φ is the subdifferential of a convex lower
semicontinuous function Φ : H → R ∪ {+∞}, and B
is a monotone cocoercive operator. Recall that a monotone
operator B : H → H is cocoercive if there exists a constant
β > 0 such that for all x, y ∈ H

〈Bx−By, x− y〉 ≥ β ‖Bx−By‖2 .

The abstract formulation (1) covers a large variety of
problems, see for example [1], [2], [5], [6], [8], [10], [13].
It is directly connected to two important areas, namely convex
optimization (take B = 0), and the theory of fixed point for
nonexpansive mappings (take Φ = 0, and B = I − T with
T a nonexpansive mapping). By a classical result, the two
operators ∂Φ and B are maximal monotone, as well as their
sum A = ∂Φ + B. We are going to exploit the structure
of the maximal monotone operator A in order to develop
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first continuous dynamics, and then, by time discretization,
splitting forward-backward algorithms that aim to solve (1).
Precisely, our analysis relies on the convergence properties (as
t→ +∞) of the orbits of the system

υ (t) ∈ ∂Φ (x (t)) (2)
λẋ (t) + υ̇ (t) + υ (t) +B (x (t)) = 0. (3)

In (3), λ is a positive constant which acts as a Levenberg-
Marquard regularization parameter. We make the following
standing assumptions: ϕ and ψ are two functions which act on
H and satisfy
• ϕ : H −→ R ∪ {+∞} is convex lower semicontinuous,

and proper;
• ψ : H −→ R is convex differentiable, and∇ψ is Lipschitz

continuous on the bounded subsets of H .
• ϕ+ ψ is bounded from below on H.
We are concerned with the study of Newton-like continuous

and discrete dynamics attached to solving the the structured
minimization problem

(P) min {ϕ(x) + ψ(x) : x ∈ H} .

Note the asymmetry between ϕ, which may be nonsmooth,
with extended real values, and ψ which is continuously
differentiable, whence the structured property of the above
problem. Indeed, we wish to design continuous and discrete
dynamics which exploit this particular structure and involve ϕ
via implicit operations (like resolvent or proximal operators)
and ψ via explicit operations (typically gradient-like methods).
So doing we expect obtening new forward-backward splitting
methods involving Riemannian metric aspects, and which
are close to the Newton method. This approach has been
delineated in a series of recent papers, [1], [3], [2], [6], [7]. In
this paper we are concerned with the stability properties with
respect to the data (λ, x0, υ0, ...) of the strong solutions of the
differential inclusion

υ (t) ∈ ∂ϕ (x (t)) (4)
λ(t)ẋ (t) + υ̇ (t) + υ (t) +∇ψ (x (t)) = 0 (5)
x (0) = x0, υ (0) = υ0 (6)

Let us now make our standing assumption on function λ(·):

λ : [0,+∞[−→ ]0,+∞[ (7)

is continuous, and absolutely continuous on each interval

[0, b], 0 < b < +∞. (8)

Hence λ̇(t) exists for almost every t > 0, and λ̇(·) is
Lebesgue integrable on each bounded interval [0, b]. We stress
the fact that we assume λ(t) > 0, for any t ≥ 0. By continuity
of λ(·), this implies that, for any b > 0, there exists some
positive finite lower and upper bounds for λ(·) on [0, b], i.e.,
for any t ∈ [0, b]

0 < λb,min ≤ λ(t) ≤ λb,max < +∞. (9)

Our main interest is to allow λ(t) to go to zero as t →
+∞. This makes the corresponding Levenberg-Marquardt
regularization method asymptotically close to the Newton’s
method.

Let us summarize the results obtained in [2], [12] . Under
the above assumptions, for any Cauchy data x0 ∈ dom∂ϕ and
υ0 ∈ ∂ϕ(x0), there exists a unique strong global solution
(x (·) , υ (·)) : [0,+∞[→ H × H of the Cauchy problem
(4)-(6). Assuming that the solution set is nonempty, if λ (t)
tends to zero not too fast, as t −→ +∞, then υ (t) −→ 0
strongly, and x (t) converges weakly to some equilibrium
which is a solution of the minimization problem (P). By
Minty representation of ∂ϕ, the solution pair (x (·) , υ (·)) of
(4)-(6) can be represented as follows: set µ(t) = 1

λ(t) , then for
any t ∈ [0,+∞),

x (t) = proxµ(t)ϕ (z (t)) ; (10)

υ (t) = ∇ϕµ(t) (z (t)) , (11)

where z (·) : [0,+∞[→ H is the unique strong global solution
of the Cauchy problem

ż(t) + (µ(t)− µ̇(t))∇ϕµ(t)(z(t))

+ µ(t)∇ψ
(

proxµ(t)Φ (z (t))
)

(12)

= 0

z (0) = x0 + µ (0) υ0. (13)

Let us recall that proxµϕ is the proximal mapping associated
to µϕ. Equivalently, proxµϕ = (I + µ∂φ)

−1 is the resolvent
of index µ > 0 of the maximal monotone operator ∂ϕ, and
∇ϕµ is its Yosida approximation of index µ > 0.

Let us stress the fact that, for each t > 0, the operators
proxµ(t)ϕ : H −→ H , ∇ϕµ(t) : H −→ H are
everywhere defined and Lipschitz continuous, which makes
this system relevant to the Cauchy–Lipschitz theorem in the
nonautonomous case, which naturally suggests good stability
results of the solution of (4)-(6) with respect to the data.

This paper is organized as follows: We first establish a priori
energy estimates on the trajectories. Then we consider the
case where λ is locally absolutely continuous. Note that it
is important, for numerical reasons, to study the stability of
the solution with respect to perturbations of the data, and in
particular of λ which plays a crucial role in the regularization
process. In Theorem 3.1 we prove the Lipschitz continuous
dependence of the solution with respect to λ. Moreover,
the Lipschitz constant only depends on the L1 norm of the
time derivative of λ. Finally, we extend our analysis to the
case where λ is a function with bounded variation (possibly
involving jumps). We use a regularization by convolution
method in order to reduce to the smooth case, and then pass
to the limit in the equations. So doing, in Theorem 4.1 and
Corollary 4.1, we prove the existence and uniqueness of a
strong solution for (4)-(6), in the case where λ is a function
with bounded variation.
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2. A Priori Estimates

The linear spaceH×H is equipped with its usual Hilbertian

norm ‖(ξ, ζ)‖ =

√
‖ξ‖2 + ‖ζ‖2 . In this section we work on

a fixed bounded interval [0, T ], and following assumption (8),
we suppose that there exists some positive constant c0 such
that

0 < c0 ≤ λ(t) for all t ∈ [0, T ]. (14)

We will also assume that ∇ψ is Lψ-Lipschitz continuous.
Indeed, this is not a restrictive assumption since one can reduce
the study to trajectories belonging to a fixed ball inH . We will
often omit the time variable t and write x,υ.... for x (t), υ (t)....
when no ambiguity arises.

In the following two Propositions we denote by
(x (·) , υ (·)) : [0,+∞) → H × H the unique strong global
solution of the Cauchy problem (4)-(6).

Proposition 2.1. Let (x, υ) be the strong solution of system (4)-(6) on [0, T ], T > 0. Then∫ T

0

‖ẋ(t)‖2 ≤ 1

c0

(
(ϕ+ ψ)(x0)− inf

H
(ϕ+ ψ)

)
. (15)

‖x‖L∞(0,T ;H) ≤ ‖x0‖+

√
T

c0

(
(ϕ+ ψ)(x0)− inf

H
(ϕ+ ψ)

) 1
2

. (16)

Proof. a) For almost every t > 0, ẋ(t) and v̇(t) are well
defined, thus

〈ẋ(t), v̇(t)〉 = lim
h→0

1

h2
〈x(t+ h)− x(t), v(t+ h)− v(t)〉 .

By equation (4), we have v(t) ∈ ∂ϕ(x(t)).
Since ∂ϕ : H ⇒ H is monotone

〈x(t+ h)− x(t), v(t+ h)− v(t)〉 ≥ 0.

Dividing by h2 and passing to the limit preserves the
inequality, which yields

〈ẋ(t), v̇(t)〉 ≥ 0. (17)

By taking the inner product of both sides of (5) by ẋ(t) we
obtain

λ(t)‖ẋ(t)‖2 + 〈ẋ(t), v̇(t)〉+ 〈v(t), ẋ(t)〉+ 〈∇ψ(x(t)), ẋ(t)〉 = 0.

By (17) we infer

λ(t)‖ẋ(t)‖2 + 〈v(t), ẋ(t)〉+ 〈∇ψ(x(t)), ẋ(t)〉 ≤ 0. (18)

Noticing that x and v are continuous on [0, T ], hence
bounded, and that λ is bounded from below on [0, T ] by a
positive number, one easily gets from (18) that

ẋ ∈ L2(0, T ;H). (19)

For our stability analysis, we now establish a precise
estimate of the L2 norm of ẋ. By the classical derivation chain
rule

d

dt
ψ(x(t)) = 〈∇ψ(x(t)), ẋ(t)〉 . (20)

We appeal to a similar formula which is still valid for a
convex lower semicontinuous proper function ϕ : H →
R ∪ {+∞}. Notice that

i) v(t) ∈ ∂ϕ(x(t)) for almost every t ∈ [0, T ];
ii) v is continuous on [0, T ], and hence belongs to

L2(0, T ;H);
iii) ẋ ∈ L2(0, T ;H) by (19).

By i), ii), iii), conditions of [11, Lemma 3.3] are satisfied,
which allows to deduce that t 7→ ϕ (x (t)) is absolutely
continuous on [0, T ], and for almost t ∈ [0, T ],

d

dt
ϕ(x(t)) = 〈v(t), ẋ(t)〉 . (21)

Combining (18) with (20) and (21) we obtain

λ(t)‖ẋ(t)‖2 +
d

dt
(ϕ(x(t)) + ψ(x(t))) ≤ 0. (22)

By integrating the above inequality from 0 to T we obtain∫ T

0

λ(t)‖ẋ(t)‖2dt+ (ϕ+ψ)(x(T )) ≤ (ϕ+ψ)(x(0)). (23)

Sinceϕ+ψ is bounded from below onH , and λ is minorized
by the positive constant c0 on [0, T ] (see (14)), we infer∫ T

0

‖ẋ(t)‖2dt ≤ 1

c0

(
(ϕ+ ψ)(x0)− inf

H
(ϕ+ ψ)

)
. (24)

b) Since x(·) is absolutely continuous on bounded sets, for
any t ∈ [0, T ]

x(t) = x0 +

∫ t

0

ẋ(τ)dτ. (25)

Passing to the norm, and using Cauchy-Schwarz inequality
yields

‖x(t)‖ ≤ ‖x0‖+

∫ t

0

‖ẋ(τ)‖dτ

≤ ‖x0‖+
√
T

(∫ T

0

‖ẋ(τ)‖2dτ

) 1
2

. (26)

Combining the above inequality with (24) gives

‖x(t)‖ ≤ ‖x0‖+
√
T

c0

(
(ϕ+ ψ)(x0)− inf

H
(ϕ+ ψ)

) 1
2
. (27)
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This being true for any t ∈ [0, T ]

‖x‖L∞(0,T ;H) ≤ |x0‖+

√
T

c0

(
(ϕ+ ψ)(x0)− inf

H
(ϕ+ ψ)

) 1
2

. (28)

Let us now exploit another a priori energy estimate.
Proposition 2.2. Let (x, υ) be the strong solution of system (4)-(6) on [0, T ], T > 0. Then∫ T

0

‖v̇(t)‖2dt ≤ ‖v0‖2 + 2T‖∇ψ(x0)‖2 +
2T 2L2

ψ

c0

(
(ϕ+ ψ)(x0)− inf

H
(ϕ+ ψ)

)
(29)

‖v‖L∞(0,T ;H) ≤ ‖v0‖+
√

2T‖∇ψ(x0)‖+

√
2

c0
TLψ

(
(ϕ+ ψ)(x0)− inf

H
(ϕ+ ψ)

) 1
2

. (30)

Proof. By taking the scalar product of (5) by v̇(t) we obtain

λ(t) 〈ẋ(t), v̇(t)〉+ ‖v̇(t)‖2 + 〈v(t), v̇(t)〉+ 〈∇ψ(x(t)), v̇(t)〉 = 0.

By (17) we infer
‖v̇(t)‖2 + 〈v(t), v̇(t)〉+ 〈∇ψ(x(t)), v̇(t)〉 ≤ 0. (31)

Hence
‖v̇(t)‖2 +

1

2

d

dt
‖v(t)‖2 ≤ ‖∇ψ(x(t))‖‖v̇(t)‖ ≤ 1

2
‖∇ψ(x(t))‖2 +

1

2
‖v̇(t)‖2 (32)

which implies

‖v̇(t)‖2 +
d

dt
‖v(t)‖2 ≤ ‖∇ψ(x(t))‖2. (33)

By integrating the above inequality we deduce that, for any t ∈ [0, T ]∫ t

0

‖v̇(τ)‖2dτ + ‖v(t)‖2 ≤ ‖v0‖2 +

∫ T

0

‖∇ψ(x(τ))‖2dτ. (34)

Since ∇ψ is Lψ-Lipschitz continuous

‖∇ψ(x(τ))‖ ≤ ‖∇ψ(x0)‖+ Lψ‖x(τ)− x0‖. (35)

A careful look at the proof of (28) gives the more precise estimate

‖x− x0‖L∞(0,T ;H) ≤
√
T

c0

(
(ϕ+ ψ)(x0)− inf

H
(ϕ+ ψ)

) 1
2

(36)

Hence for any τ ∈ [0, T ]

‖∇ψ(x(τ))‖ ≤ ‖∇ψ(x0)‖+ Lψ

√
T

c0

(
(ϕ+ ψ)(x0)− inf

H
(ϕ+ ψ)

) 1
2

. (37)

Combining (34) with (37) gives∫ t

0

‖v̇(τ)‖2dτ + ‖v(t)‖2 ≤ ‖v0‖2 + 2T‖∇ψ(x0)‖2 +
2T 2L2

ψ

c0

(
(ϕ+ ψ)(x0)− inf

H
(ϕ+ ψ)

)
. (38)

As a consequence ∫ T

0

‖v̇(t)‖2dt ≤ ‖v0‖2 + 2T‖∇ψ(x0)‖2 +
2T 2L2

ψ

c0

(
(ϕ+ ψ)(x0)− inf

H
(ϕ+ ψ)

)
, (39)

and

‖v‖L∞(0,T ;H) ≤ ‖v0‖+
√

2T‖∇ψ(x0)‖+

√
2

c0
TLψ

(
(ϕ+ ψ)(x0)− inf

H
(ϕ+ ψ)

) 1
2

. (40)

which ends the proof.
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We can now deduce from the two preceding propositions an a priori bound on the L∞ norm of ẋ and v̇.

‖ẋ‖L∞(0,T ;H) ≤
‖v0‖
c0

+
1 +
√

2T

c0
‖∇ψ(x0)‖+

(
√

2T +
√
T )Lψ

c
3
2
0

(
(ϕ+ ψ)(x0)− inf

H
(ϕ+ ψ)

) 1
2

(41)

‖v̇‖L∞(0,T ;H) ≤ ‖v0‖+ (1 +
√

2T )‖∇ψ(x0)‖+
(
√

2T +
√
T )Lψ

c
1
2
0

(
(ϕ+ ψ)(x0)− inf

H
(ϕ+ ψ)

) 1
2

(42)

Proof. a) Let us return to the equation obtained by taking the inner product of both sides of (5) by ẋ(t)

λ(t)‖ẋ(t)‖2 + 〈ẋ(t), v̇(t)〉+ 〈v(t), ẋ(t)〉+ 〈∇ψ(x(t)), ẋ(t)〉 = 0.

By (17), and λ is minorized by the positive constant c0 on [0, T ],we infer

c0‖ẋ(t)‖2 + 〈v(t) +∇ψ(x(t)), ẋ(t)〉 ≤ 0.

Hence

‖ẋ(t)‖ ≤ 1

c0
‖v(t) +∇ψ(x(t))‖ ≤ 1

c0
(‖v(t)‖+ ‖∇ψ(x0)‖+ Lψ‖x(t)− x0‖).

By (36) and (40) we deduce that

‖ẋ‖L∞(0,T ;H) ≤
1

c0

(
‖v0‖+

√
2T‖∇ψ(x0)‖+

√
2

c0
TLψ

(
(ϕ+ ψ)(x0)− inf

H
(ϕ+ ψ)

) 1
2

)
+

1

c0
‖∇ψ(x0)‖+

Lψ
c0

√
T

c0

(
(ϕ+ ψ)(x0)− inf

H
(ϕ+ ψ)

) 1
2

≤ ‖v0‖
c0

+
1 +
√

2T

c0
‖∇ψ(x0)‖+

(
√

2T +
√
T )Lψ

c
3
2
0

(
(ϕ+ ψ)(x0)− inf

H
(ϕ+ ψ)

) 1
2

.

b) Let us return to the equation obtained by taking the inner product of both sides of (5) by v̇(t)

λ(t) 〈ẋ(t), v̇(t)〉+ ‖v̇(t)‖2 + 〈v(t), v̇(t)〉+ 〈v∇ψ(x(t)), v̇(t)〉 = 0.

A similar argument as above yields
‖v̇(t)‖ ≤ ‖v(t) +∇ψ(x(t))‖

from which we deduce the result.

Let us enunciate some straight consequences of Proposition 2.3.
Corollary 2.1. The following properties hold: for any 0 < T < +∞
1. t 7→ x(t) is Lipschitz continuous on [0, T ] with constant

‖v0‖
c0

+
1 +
√

2T

c0
‖∇ψ(x0)‖+

(
√

2T +
√
T )Lψ

c
3
2
0

(
(ϕ+ ψ)(x0)− inf

H
(ϕ+ ψ)

) 1
2

2. t 7→ v(t) is Lipschitz continuous on [0, T ], with constant

‖v0‖+ (1 +
√

2T )‖∇ψ(x0)‖+
(
√

2T +
√
T )Lψ

c
1
2
0

(
(ϕ+ ψ)(x0)− inf

H
(ϕ+ ψ)

) 1
2

3. Stability Results

In the next theorem we analyze the Lipschitz continuous dependence of the solution (x, υ) of the Cauchy problem (4)-(6) with
respect to the function λ and the initial point (x0, υ0). Our demonstration is based on that followed in [6],[9],[14].

Theorem 3.1. Suppose that λ, η : [0, T ] −→ [c0,+∞[ are absolutely continuous functions, with T > 0 and c0 > 0. Let
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(x, υ) , (y, w) : [0, T ] −→ H ×H be the respective strong solutions of the inclusions

λẋ+ υ̇ + υ +∇ψ (x) = 0, υ ∈ ∂ϕ (x) , x (0) = x0, υ (0) = υ0, (43)
ηẏ + ẇ + w +∇ψ (y) = 0, w ∈ ∂ϕ (y) , y (0) = y0, w (0) = w0. (44)

Define θ : [0, T ] −→ R, for each t ∈ [0, T ], by

θ(t) =

√
c20 ‖x(t)− y(t)‖2 + ‖υ(t)− w(t)‖2.

Then

‖θ‖L∞([0,T ]) ≤
[
λ(0) + η(0)

2
‖x0 − y0‖+ ‖υ0 − w0‖+

C

2
‖λ− η‖L1([0,T ])

]
× exp

(
‖λ̇+ η̇‖L1

2c0
+ T (1 +

Lψ
c0

)

)
, (45)

with

C =
‖v0‖+ ‖w0‖

c0
+

1 +
√

2T

c0
(‖∇ψ(x0)‖+ ‖∇ψ(y0)‖)+

(
√

2T +
√
T )Lψ

c
3
2
0

((
(ϕ+ ψ)(x0)− inf

H
(ϕ+ ψ)

) 1
2

+
(

(ϕ+ ψ)(y0)− inf
H

(ϕ+ ψ)
) 1

2

)
.

In particular, if x0 = y0, υ0 = w0, then

‖θ‖L∞([0,T ]) ≤
C

2
‖λ− η‖L1([0,T ]) × exp

(
‖λ̇+ η̇‖L1([0,T ])

2c0
+ T (1 +

Lψ
c0

)

)
, (46)

with

C =
2‖v0‖
c0

+ 2
1 +
√

2T

c0
‖∇ψ(x0)‖+ 2

(
√

2T +
√
T )Lψ

c
3
2
0

(
(ϕ+ ψ)(x0)− inf

H
(ϕ+ ψ)

) 1
2

.

Proof. To simplify the exposition, define γ : [0, T ] −→ R

γ =
λ+ η

2
.

Using the assumptions λ, η ≥ c0 and the monotonicity of ∂ϕ we conclude that for any t ∈ [0, T ]

c0 ≤ γ, 〈x− y, υ − w〉 ≥ 0.

Therefore
θ ≤

√
γ2 ‖x− y‖2 + ‖υ − w‖2 ≤ ‖γ (x− y) + (υ − w)‖ . (47)

Let us show that θ satisfies a Gronwall inequality. Let us start from

d

dt
[γ (x− y) + (υ − w)] = γ̇ (x− y) + γ (ẋ− ẏ) + (υ̇ − ẇ) .

In view of (43) and (44),
(υ̇ − ẇ) = −λẋ+ ηẏ − (υ − w)− (∇ψ (x)−∇ψ (y)) .

Combining the two above relations gives

d

dt
[γ (x− y) + (υ − w)] = γ̇ (x− y) + γ (ẋ− ẏ)− λẋ+ ηẏ − (υ − w)− (∇ψ (x)−∇ψ (y)) ,

= γ̇ (x− y) +
η − λ

2
(ẋ+ ẏ)− (υ − w)− (∇ψ (x)−∇ψ (y)) .

Since γ, x, y, w, υ are absolutely continuous, the function γ (x− y)+(υ − w) is also absolutely continuous. As a consequence,
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integration of the above inequality on [0, s], for s ∈ [0, T ], yields

[γ (x− y) + (υ − w)] (s)− [γ (x− y) + (υ − w)] (0) =

1

2

∫ s

0

(η − λ) (ẋ+ ẏ) dt+

∫ s

0

(γ̇ (x− y)− (υ − w)) dt−
∫ s

0

(∇ψ (x)−∇ψ (y)) dt.

Passing to the norm

‖[γ (x− y) + (υ − w)] (s)‖ ≤ γ (0) ‖x0 − y0‖+ ‖υ0 − w0‖

+
1

2

∫ s

0

|λ− η| ‖ẋ+ ẏ‖ dt+

∫ s

0

‖γ̇ (x− y)− (υ − w) ‖dt+

∫ s

0

‖∇ψ (x)−∇ψ (y) ‖dt. (48)

By Lipschitz continuity property of∇ψ, and definition of θ, we have

‖∇ψ (x(t))−∇ψ (y(t)) ‖ ≤ Lψ‖x(t)− y(t)‖ ≤ Lψ
c0
θ(t). (49)

On the other hand

‖γ̇ (x− y)− (υ − w)‖2 = |γ̇|2 ‖x− y‖2 + ‖υ − w‖2 + 2

〈
c0 (x− y) ,

γ̇

c0
(w − υ)

〉
≤ |γ̇|2 ‖x− y‖2 + ‖υ − w‖2 + c20 ‖x− y‖

2
+
|γ̇|2

c20
‖υ − w‖2

=

(
|γ̇|2

c20
+ 1

)
θ2, (50)

Combining (48), (49), (50) and θ ≤ ‖γ (x− y) + (υ − w)‖, we obtain

θ(s) ≤ γ (0) ‖x0 − y0‖+ ‖υ0 − w0‖+
1

2

∫ s

0

|λ− η| ‖ẋ+ ẏ‖ dt+

∫ s

0

θ(t)

√ |γ̇|2
c20

+ 1 +
Lψ
c0

 dt
≤ γ (0) ‖x0 − y0‖+ ‖υ0 − w0‖+

1

2
‖λ− η‖L1([0,T ])‖ẋ+ ẏ‖L∞([0,T ]) +

∫ s

0

θ(t)

[
|γ̇|
c0

+ 1 +
Lψ
c0

]
dt.

Applying Gronwall’s inequality yields

θ(s) ≤
[
γ (0) ‖x0 − y0‖+ ‖υ0 − w0‖+

1

2
‖λ− η‖L1([0,T ])‖ẋ+ ẏ‖L∞([0,T ])

]
× exp

∫ s

0

[
|γ̇|
c0

+ 1 +
Lψ
c0

]
dt.

Combining this estimation with the bound on the L∞ norm of ẋ and ẏ (see Proposition 2.3)) gives

‖θ‖L∞([0,T ]) ≤
[
γ (0) ‖x0 − y0‖+ ‖υ0 − w0‖+

C

2
‖λ− η‖L1([0,T ])

]
× exp

∫ T

0

[
|γ̇|
c0

+ 1 +
Lψ
c0

]
dt

with

C =
‖v0‖+ ‖w0‖

c0
+

1 +
√

2T

c0
(‖∇ψ(x0)‖+ ‖∇ψ(y0)‖)

+
(
√

2T +
√
T )Lψ

c
3
2
0

((
(ϕ+ ψ)(x0)− inf

H
(ϕ+ ψ)

) 1
2

+
(

(ϕ+ ψ)(y0)− inf
H

(ϕ+ ψ)
) 1

2

)
.

Equivalently

‖θ‖L∞([0,T ]) ≤
[
λ(0) + η(0)

2
‖x0 − y0‖+ ‖υ0 − w0‖+

C

2
‖λ− η‖L1([0,T ])

]
× exp

(
‖λ̇+ η̇‖L1([0,T ])

2c0
+ T (1 +

Lψ
c0

)

)
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Remark 3.1. In the cas ψ = 0 we recover exactly the same
stability results as [6, Theorem 3.1].

Remark 3.1. - It is worth noticing that, besides the Lipschitz
continuous dependence with respect to λ of the solution
(x, υ) of (4)–(6), Theorem (3.1) also provides its continuous
dependence with respect to the initial data (x0, υ0). More
precisely, if (xn, υn) (resp. (x, υ) ) is the solution of
(4)–(6) corresponding to the Cauchy data (x0n, υ0n)(resp.
(x0, υ0)), as a direct consequence of (45) we obtain for all
T > 0, (∂ϕ 3 (x0n, υ0n) −→ (x0, υ0)) =⇒ (xn, υn) −→
(x, υ) uniformly on [0, T ] .

Note also that, by contrast with semigroup generated by a
subdifferential convex [11],[15] , there is no regularizing effect
on the initial condition: there is no way to define a solution of
(4)–(6) for x0 ∈ dom∂ϕ \ dom∂ϕ since in that case, for any
approximation sequence x0n ∈ dom∂ϕ and υ0n ∈ ∂ϕ (x0n),
one has lim

n
‖υ0n‖ = +∞, which would imply the blow-up of

the sequence (xn, υn) as n −→ +∞, on any finite interval.
Remark 3.2. Another approach is to study the equivalent

problem (13)-(13), based on the known stability results for
the Cauchy-Lipschitz problem. Although conceptually simple,
this approach seems more technical.

4. Bounded Variation Regularization
Coefficient λ (·)

Let us suppose that λ (·) : [0, T ] −→ ]0,∞[ is of bounded
variation on [0, T ], where T > 0. That is TV (λ, [0, T ]) <
+∞, where TV (λ, [0, T ]) is the total variation of λ on [0, T ] :

TV (λ, [0, T ]) = sup

p∑
i=1

|λ (τi)− λ (τi−1)| ,

the supremum being taken over all p ∈ N and all strictly
increasing sequences τ0 < τ1 < · · · < τp of points of [0, T ].
Function λ may involve jumps. We also suppose that λ is
bounded away from 0:

inf λ ([0, T ]) > 0.

The following lemmas which are proved in [6] gather some
classical facts concerning the approximation of functions of
bounded variation by smooth functions together with some
technical results useful for sequel.

Lemma 4.1. Let λ : [0, T ] −→ ]0,∞[ be of bounded

variation on [0, T ]. Then there exists a sequence (λn)n∈N, with
λn ∈ C∞ ([0, T ]) for each n ∈ N, such that
i) inf λ([0, T ]) ≤ λn (t) ≤ supλ([0, T ]), ∀t ∈ [0, T ],
∀n ∈ N.

In particular, λn ≥ 0 if λ ≥ 0;
ii) λn −→ λ in Lp (0, T ) for any 1 ≤ p <∞;
iii) TV (λn, [0, T ]) =

∫ T
0
|λ̇n (t) |dt ≤ TV (λ, [0, T ]) .

Lemma 4.2. Let zn, z ∈ C ([0, T ] , H) be such that zn −→
z uniformly and (zn)n is L-Lipschitz continuous for some
positive constant L independent of n ∈ N. Let λn −→
λ in L2 (0, T ) . Then λnżn converges weakly to λż in
L2 (0, T ;H) .

We can now state the main result of this section.
Theorem 4.1. Let λ : [0, T ] −→ ]0,∞[ be of bounded

variation on [0, T ], and suppose c0 = inf λ ([0, T ]) > 0.
Let x0 ∈ dom∂ϕ and υ0 ∈ ∂ϕ(x0), υ0 6= 0. Then
there is existence and uniqueness of a strong solution (x, υ) :
[0, T ] −→ H ×H of the Cauchy problem

υ (t) ∈ ∂ϕ (x (t)) , 0 ≤ t ≤ T (51)
λ (t) ẋ (t) + υ̇ (t) + υ (t) +∇ψ (x (t)) = 0,

a.e. 0 ≤ t ≤ T, (52)
x (0) = x0, υ (0) = υ0. (53)

Proof. Existence: According to Lemma 4.1, there exists a
sequence of functions (λn)n∈N in C∞ ([0, T ]), with λn(t) ≥
c0, which converges to λ in Lp (0, T ) for p ≥ 1, and satisfies
the condition ∫ T

0

∣∣∣λ̇n (t)
∣∣∣ dt ≤ TV (λ) . (54)

For each n ∈ N there exists a unique (xn, υn) solution of
the differential inclusion

υn (t) ∈ ∂ϕ (xn (t)) , 0 ≤ t ≤ T, (55)
λn (t) ẋn (t) + υ̇n (t) + υn (t) +∇ψ (xn (t)) = 0,

a.e. 0 ≤ t ≤ T, (56)
xn (0) = x0, υn (0) = υ0. (57)

We will show that (xn, υn) converges uniformly to a
solution of (51-53).

Consider, in C ([0, T ] , H ×H), the norm

‖(z, w)‖c0 = max
t∈[0,T ]

√
c20 ‖z (t)‖2 + ‖w (t)‖2 .

It is equivalent to the sup norm in C ([0, T ] , H ×H) . Using Theorem3.1, (46) and (54) we deduce the existence of a constant
C (which is independant of n) such that for any n,m we have

‖(xn, υn)− (xm, υm)‖c0 ≤ C exp


∥∥∥λ̇n + λ̇m

∥∥∥
L1([0,T ])

2c0
+ T (1 +

Lψ
c0

)

 ‖λn − λm‖L1([0,T ])

≤ C exp

(
TV (λ)

c0
+ T (1 +

Lψ
c0

)

)
‖λn − λm‖L1([0,T ]) .
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Since the sequence (λn)n∈N converges to λ in L1 (0, T ), we deduce that (xn, υn) is a Cauchy sequence with respect to the
sup norm. Therefore, (xn, υn) converges uniformly to some continuous (x, υ) : [0, T ] −→ H ×H . Since∇ψ is continuous we
also obtain

∇ψ(xn)→ ∇ψ(x) uniformly on [0, T ].

Moreover, Lemma 4.2 ensures that λnẋn and v̇n converge weakly to λẋ and v̇ in L2 (0, T ; H). Hence letting n → +∞ in
(56) gives

λẋ+ υ̇ + υ +∇ψ (x) = 0,

that’s (52). Finally, since the graph of ∂ϕ is closed we obtain, for all t ∈ [0, T ], υ (t) ∈ ∂ϕ (x (t)) that’s (51). Hence (x, υ) is a
solution of (51)-(53).

Uniqueness: We adapt the proof of [6], using differential and integral calculus for BV functions which involves differential
measures.

Define λ− : [0, T ] 7−→ [c0,+∞[ by

λ− (0) = λ (0) ,

0 < t ≤ T : λ− (t) = limλ (t− ε) .
ε>0,ε→0

Let (x, υ) , (y, w) : [0, T ]→ H ×H be two strong solutions of (51)-(52)-(53). Explicitly

λẋ+ υ̇ + υ +∇ψ (x) = 0 a.e.; υ (t) ∈ ∂ϕ (x (t)) ∀t; x (0) = x0, υ (0) = υ0,

λẏ + ẇ + w +∇ψ (y) = 0 a.e.; w (t) ∈ ∂ϕ (y (t)) ∀t; y (0) = x0, w (0) = υ0.

Since λ = λ− a.e., we also have

λ−ẋ+ υ̇ + υ +∇ψ (x) = 0 and λ−ẏ + ẇ + w +∇ψ (y) = 0 a.e.

and consequently
λ− (ẋ− ẏ) + (υ̇ − ẇ) + υ − w +∇ψ (x)−∇ψ (y) = 0 a.e. (58)

In terms of differential measures on [0, T ] we have [19]

d
[
λ− (x− y) + (υ − w)

]
= λ−d (x− y) + (x− y) dλ− + d (υ − w) . (59)

Integrating the left hand term on [0, s[ and taking the initial condition into account, we obtain for s ∈ [0, T ] [? , Corollary 8.2]∫
[0,s[

d
[
λ− (x− y) + (υ − w)

]
= λ− (s) (x (s)− y (s)) + (υ (s)− w (s)) . (60)

Now integrating the right hand term of (59) on [0, s) and taking (58) into account, we get∫
[0,s[

[
λ−d (x− y) + (x− y) dλ− + d (υ − w)

]
=

∫
[0,s[

[
λ−d (x− y) + d (υ − w)

]
+

∫
[0,s[

(x− y) dλ−

=

∫
[0,s[

[
λ− (ẋ− ẏ) + υ̇ − ẇ

]
dt+

∫
[0,s[

(x− y) dλ−

= −
∫
[0,s[

[υ − w +∇ψ (x)−∇ψ (y)] dt+

∫
[0,s[

(x− y) dλ−. (61)

From (59,60,61) we deduce

λ− (s) (x (s)− y (s)) + (υ (s)− w (s)) =

∫
[0,s[

(x− y) dλ− −
∫
[0,s[

[υ − w +∇ψ (x)−∇ψ (y)] dt.

Whence∥∥λ− (s) (x (s)− y (s)) + (υ (s)− w (s))
∥∥ ≤ ∫

[0,s[

‖x− y‖
∣∣dλ−∣∣+

∫
[0,s[

‖υ − w‖ dt+

∫
[0,s[

‖∇ψ (x)−∇ψ (y)‖ dt (62)
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Define θ (s) =
(
c20 ‖x (s)− y (s)‖2 + ‖υ (s)− w (s)‖2

)1/2
.

The same reasoning as in Theorem 3.1 yields

θ (s) ≤
∥∥λ− (s) (x (s)− y (s)) + (υ (s)− w (s))

∥∥ ,∀s ∈ [0, T ] .

Besides we also have c0 ‖x (s)− y (s)‖ ≤ θ (s),
‖υ (s)− w (s)‖ ≤ θ (s), and we have that ∇ψ is the gradient
of a convex, continuously differentiable function ψ : H −→
R, and by Lipschitz continuity property of ∇ψ, and definition
of θ, we have

‖∇ψ (x(t))−∇ψ (y(t)) ‖ ≤ Lψ‖x(t)− y(t)‖

≤ Lψ
c0
θ(t). (63)

Hence, with (62)

θ (s) ≤ 1

c0

∫
[0,s[

θ
∣∣dλ−∣∣+

∫
[0,s[

θdt

+
1

c0
Lψ

∫
[0,s[

θdt =

∫
[0,s[

θdµ, (64)

where dµ denotes the nonnegative measure 1
c0
|dλ−| +(

1 + 1
c0
Lψ

)
dt.

If θ 6≡ 0 on [0, T ] , define t0 = inf {t ∈ [0, T ] , θ (t) > 0}.
Note t0 < T and θ (t0) = 0, since θ is continuous. With (64)
we then have

θ (s) ≤
∫
]t0,s[

θdµ, t0 < s ≤ T. (65)

In view of
∫
]t0,t0]

dµ = 0 and of the right continuity at t0
of t −→

∫
]t0,t]

dµ, [? , Proposition 9.1 ] there exists some
t1 ∈ ]t0, T ] such that

∫
]t0,t1]

dµ < 1/2. Let M be an upper
bound of θ on [0, t1]; from (65) we deduce, for s ∈ ]t0, t1]

θ (s) ≤M
∫
]t0,s[

dµ ≤M
∫
]t0,t1[

dµ ≤ M

2
.

Hence M/2 is also an upper bound of θ on [0, t1] , which
necessarily entails M = 0 and θ ≡ 0 on [0, t1]. But this
is contradiction with the definition of t0. Hence θ ≡ 0 and
(x, υ) ≡ (y, w) on [0, T ].

Theorem 2.2 has a natural global version formulation:
Corollary 4.1. Suppose that λ : [0,∞[ → ]0,∞[ is of

bounded variation on [0, T ] and inf λ ([0, T ]) > 0 for any
T <∞. Let υ0 ∈ ∂ϕ (x0) and υ0 6= 0. Then there is existence
and uniqueness of a strong solution (x, υ) : [0,∞[ −→ H×H
of the Cauchy problem

λẋ+ υ̇ + υ +∇ψ (x) = 0, υ (t) ∈ ∂ϕ (x (t))

x (0) = x0, υ (0) = υ0
(66)

where the first equality holds for almost all t ∈ [0,∞[ , and the
inclusion holds for all t ∈ [0,∞[ .

Remark 4.1. The results obtained in this paper still hold if

B = ∇ψ the gradient of a convex, continuously differentiable
function ψ : H −→ R is replaced by a maximal monotone
cocoercive operator B : H −→ H (see [1, 4, 17, 18, 21, 22] ).

5. Conclusion

In a Hilbert space setting, we studeid the stability properties
of the regularized continuous Newton method with two
potentials, which aims at solving inclusions governed by
structured monotone operators. The Levenberg-Marquardt
regularization term acts in an open loop way. As a byproduct
of our study, we took the regularization coefficient of bounded
variation. These stability results are directly related to the
study of numerical algorithms that combine forward-backward
and Newton’s methods

Let us list some interesting questions to be examined in the
future:

1. Study the asymptotic stability properties, corresponding
to the case where T = +∞, in connection with the
convergence results of [2] and [7].

2. Extend the results to the case where the Levenberg-
Marquart regularization term is given in a closed-loop
form, λ(t) = α(‖ẋ(t)‖) as in [6].

3. Study the same questions for the corresponding forward-
backward algorithms, see [1].
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[11] Brézis, H.: Opérateurs Maximaux Monotones et Semi-
Groupes de Contractions dans les Espaces de Hilbert.
North-Holland/Elsevier, New-York (1973).
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