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Abstract: In the theory of partitions, Euler’s partition theorem involving odd parts and different parts is one of the famous
theorems. It states that the number of partitions of an integer n into odd parts is equal to the number of partitions of n into
different parts. By intepretting odd parts as parts congruent to 1 modulo 2, the second author and Keith provided a completely
generalization about Euler’s partition theorem involving odd parts and different parts for all moduli and provide new companions
to Rogers-Ramanujan-Andrews-Gordon identities related to this theorem. They gave a combinatorial proof of the theorem by
establishing bijection. In this note, we will offer an anclytic view point of this beautiful theorem. We use g-series and generating
function theories to provide an analytic style proof for some cases of Keith-Xiong’s theorem. By defining basic units and special
units, the basic units in the partitions are divided into two categories, and then the number between the basic units in the special
units is classified, and all the cases when m = 3 and alternative sum type (X, 2) are given, our method is verifying the generating

functions of both sides satisfying the same recurrences.
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1. Introduction

Euler proved that the number of partitions of n into odd
parts is equal to the number of partitions n into different
parts. Over the years, there have been a lot of refinements
and generalizations around it [1, 2, 3, 4, 5, 6, 7, 8§]. By
intepretting odd parts as parts congruent to 1 modulo 2, the
second author and Keith provided a completely generalization
[9]. Fix a natural number m > 2, a partition with all parts not
congruent to zero modulo m is said to a partition with length
type (I1,l2,13, ..., lm—2,lm—1), where for 1 < ¢ < m — 1,
l; is the number of parts of the partition which are congruent

AeP

For example, take n = 7,m = 3, the partitions of 7 with
alternative sum type (2,1) are 4 + 2+ 1land 3 +2+ 1+ 1.
The partitions of 7 with length type (2,1) are 5+ 1 + 1 and
4+ 2+ 1. In order to prove this theorem, they construct a
beautiful bijection [9, 11, 12, 13, 14, 15].In this note, we use

to ¢ modulo m. A m-regular partition is said to be a partition
with alternative sum type (X1, %a,...,Xm_2,2m_1), if we
write the partition as the form Ay > Ao > A3 > -+ > A\,
(k > 1) by allowing zero as a part, then 3; = (A\; — A\jy1) +
(Am+i) — Am+it1) + Ae@mti) — A@mtivn)) + - - -+
(Akm—m-+i) — A(km—m-+i+1))- The main result in [9] is the
following theorem.

Theorem 1.1 Let m > 2, let P be the set of partitions with
each part can be repeated at most m— 1 times, this implies their
alternating sum types can not be (0,0, ...,0). Let @ be the set
of partitions with no parts = 0 (mod m). Then we have the
partition identity:

Ziiil(k)qw — Z lel(ﬂ)zéz(ﬂ) . Zlm_ll(u)ql“‘.

m—

HEQ

g-series and generating function theories to provide an analytic
style proof for m = 3 and alternative sum type (X,2). We
hope to offer an anclytic view point of this beautiful theorem.
Our method is verifying the generating functions of both sides
satisfying the same recurrences.
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2. Analytic Proof for m = 3 and
Alternative Sum Type (X, 2)

We begin with the following lemma.
Lemma 2.1 Letm > 2,1 < i < m — 1. Let @); be
the set of partitions with all parts are congruent to ¢ modulo

fQi(Z7q) = Z 2

AEQ;

and

fQ(ZhZQv"-,Zm—l;Q) =
AEQ

then the generating function of @) satisfies

W= 3" bilin)elen, 1) =

1>0,n>0

3 LAWEO) ()

¢ =" bl

m, let fo,(z,q) be the generating function for @Q;, b;(l;n)
be the number of partitions of n with [ parts and all parts
=4 (mod m). Let fg(z1, 22, ..., 2m—1,¢) be the generating
function of @, and b(ly,l2,...,l,—1;n) be the number of
partitions of n with length type (11,12, ..., ln—_1). Thatis

length of A,

. l1 12 Ilm-1_n
lm—1;m)27" 252 <+ 2,71 Q"

1;,n>0

m—1
fQ(ZlazQ;"'aszl7 H fQL Zl7
i=1

equivalently,

b(ly, o, ...

7lm—1;n) = Z

ni>0,ni+4nm_1=n

Proof. 'This is a simple application of the fundamental
counting principle. In order to construct a partition of n with
length type (I1,1o, ..., ln—1), we firstly decomposition n into
m — 1 positive integers ny, na, . . ., Ny, —1, for each n;, choose
a partition of n; with [; parts and all parts = ¢ (mod m). Put
all parts of these m-1 partitions together, we get a partition
of n with length type (I1,l2,...,l;n—1). When considering
all partitions of n; with the given conditions and all possible
decompositions of n, we get all partitions of n with given the

bl(h;m)bz(lz; n2) T

bm—1 (lm—1§ nm—l)~

length type (1,12, ..., lm—1)-
From this lemma and the facts that the function

q21'

(1—¢*)(1—q°%
generates all partitions with exactly two parts and each part = ¢

(mod 3) and £ (1 < j < m — 1) generates all partitions
with only one part and this part is congruent to 5 modulo m,
we get the following results:

(i=1,2)

4
q
b(1,2;n)2'q" = b(l,0;m)2" : (1)
1,n>0 lg;() (1—¢*)(1—¢°%
l l q2
b(2,l;n)z'q" = b(0,l;n)z'q" | ————, 2)
l%o l,%z:o (1=¢*)(1 =)
J
Z bis; (1, 1%n)zlqn = Z b(0, 0,1,0 ,O;H)zlq” T _qqm (3)

Where 1 < j < m — 1,5 # i and byj(l,1;n) =
b(0,0,...,0,1,0,...,0,1,0,...,0;n), which is the number
of partitions of n with exactly [ parts = ¢ (mod m) and one
part = j (mod m).

Now we prove Theorem 1.1 for the type (X,2). Let
a(X1,X2;n) denote the number of partitions of n with the

Z a(X,2;n)25¢" =

2,n>0 2,n>0

alternating sum type (X1, X). Theorem 1.1 is equivalent to
the claim: for any ¥ > 0, a(X,2;n) = b(X,2;n). Since
a(3,0;n) = b(X, 0;n), this is due to Pak-Postnikov[7, 9]. So
itis only to prove the generating function of a(X, 2; n) satisfies
the following identity by comparing with the identity (1):

4

Z a(,0;n)z7¢" S S— “4)

(1-¢*)(1—q°%



16

Let A be a partition with parts repeated times < 2 and the
alternating sum type (X,2). The basic units in A have two
cases:

Case A. The basic units consist in forms:

1
A1 > A =3 andtwoforms A} > A, > \j.

1
Where Ay > \; means A\ — A5 = 1. Here is an example
with four basic units:

10>8=8>7T=7>6=6>0=5>2>2>1,

the first unit and third unit are the form Ay > Ay = A3, the
second unit and fourth unit (with black colour) are the form

1
AL > AL > AL
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Case B. The basic units consist in forms:
! / 2 !
A1 > A2 =A3 andoneform A} > Ay > A5

Where A, 2 A5 means \;, — A5 = 2. We give an example
for this case,8 > 7=7>6 >4 =4 > 3 > 2, where the first
unit is Ay = 8, Ay = A3 = 7, the second unit is A\y = 6, \5 =
A¢ = 4, and the third unitis Ay = 3, A\g = 2, A\g = 0.

We call the types A] > A} 3 Ay and A > A > A% to be
special units.

We firstly consider Case A.

Lemma 2.2 The generating function for the number of
partitions of fixed length 3n 4 3 with alternating sum type
(%, 2) and belonging to the Case A is the sum of the following
n terms, where n > 1.

Zn+1q3n2+7n+4 n—1 1 1— g3k @ F—¢n)
.3 3. 3 ’ Z 5 3hil i) (n=2)+( 5+ (n>1)], (5)
(2¢; @ )nt1(@® Pt \ = \ 2% zq z z
Z7L+1q3n2+7n+4 n—2 1 1
n>3)+—5-—5mn2=>2)], (6)
(2¢; ) ns1(¢% @3 ns1 gé; z2q6k+4( ) 22q3”*5( )
Zn+1q3n2+7n+4 n—3 1 1
n>4)+ 5—=——=mn=>3)|, (7
(24 ¢®)n+1(0%; ¢%)nt1 1; 22q6k+7( ) z2q3”—8( )
Zn+1q3n2+7n+4 ”—(i—l) 1 . 1 ©
(2¢; ¢3)ns1(% @) nt1 s 22q6k+3n—5 " 244 |
Zn+1q3n2+7n+4 1
2, )

(2¢: ) n+1(¢%: @) g1 22¢°

Here we write them as a list so that we can easily see
how each term of them corresponds to the following analysis
and the inequalities on n in brackets means the corresponding
terms requiring n satisfying this condition. Moreover we use
the standard g-Pochhammer symbol notations for simplicity
defined by

n—1
) e i Y T (-
(a;q)n = .I_|0(1 aq’) and (a; q) o : ngréo(a,q)n.

But in the proof of our main results, we sometimes choose
product forms instead of g-Pochhammer symbol so that
readers can easily track our transformations.

Lemma 2.3 The generating function for the number of
partitions of fixed length 3n + 2 with the alternating sum type
(%, 2) and belonging to the Case A is the sum of the following
n terms.

n+1,3n%+4n+1 2 3(1 — g3n
o L T ), (10)
(24; ) n41(%¢3)n \ 22 z
Zn+1q3n2+4n+1 1
n > 2), (11)
(2¢:6*)n+1(¢% ¢*)n s =)
Zn+1q3n2+4n+1 1
n > 3), (12)
(2q;q3)n+1(q3;q3%m22q3"‘8( )



International Journal of Theoretical and Applied Mathematics 2022; 8(1): 14-29 17

Zn+1 q3n2 +4n+1 1 (13)
(2¢:¢*)nt1(a% ¢%)n 22¢*
n+1,3n+4n+1 1
S - (14)

(2¢; *)n+1(a% ¢%)n 2%q°
Lemma 2.4 The generating function for the number of partitions of fixed length 3n + 1 with alternating sum type (%, 2) and
belonging to the Case A is the sum of the following n — 1 terms.

Zn+1q3n2+4n+1 n—1 ( 1 1— q3k)
T T —— n > 2), (15)
(243 6% )n+1(0% ¢%)n £ \ 225 2%k (n22)

Zn+1q3n2+4n+1 n—2 1

n>3), (16)
(2¢; )1 (0% ¢*)n = g (2 3)

Zn+1q3n2+4n+1 n—3 1
(265 ®)nt1 (0% % )n = 2240FHT

(n=4), a7

Zn+1q3n2+4n+1 n—(n—1) 1

Z2q6k+3n—5 :

(2¢; @)1 (@ P = (19
Proof of Lemma 2.2. Let X\ be a partition of length 3n+3 and  between the two special units, etc. For example, the partition
its basic units belonging to the Case A. Note that X\ has n + 1
basic units, two of them are special units. We classify such 9>8=8>7T=7>6>5>4=4>3>2>1,
partitions into n classes by the distance of two special units.
Here the distance 0 means that there is no basic unit of the type
A1 > A2 = A3 between the two special units. The distance 1
means there is only one basic unit of type \; > Ao = A3

has the distance between special units (the color is black) 1.

By a partition of class d, 0 < d < n — 1, it means the distance

between special units is d. We consider each class as follows.
Distance 0. Let ) be such a partition, if the two special units

are not the last two basic units, then it has the form:

AL > A= A3 > > X355 > A3k—4 = A3k—3 > A3p—2 > A3p—1 > Azp >

1
A3k41 = A3k42 > A3k43 = Askga > A3k45 = A3kt6 > 0 > A3ng1 > A3nt2 = Aznq3,

or the form:
1
A > A =A3> > X355 > A3p—a = A3k—3 > A3p—2 > Azp—1 > A3p =
1
A3k4+1 > A3k42 > A3k43 = A3kta > A3k45 = A3k46 > -0 > A3ng1 > A3tz = Aznya.

Where Az,,+3 > 0and 1 < k < n — 1. By considering conjugates of such partitions, the standard partition analysis gives the
generating function for the first case is

xq P L B 1 ey s
1_Zq1_q3"'1_Zq3k—51_q3k—31_zq3k—2 1_q3k
. 1 342 1 ' Zq3k+4 Zq3n+1 q3n+3

1 zgokrt & T ka8 T ogaktd T pgendl | _ gan+d

2q q3 zq4 Zq3n+1 q3n+3 q2 1

Tlo2ql—@Bl—zgt 1 gt — gant3 2 g3kt
Zn+1q3n2+7n+4 1

= - — - , (19)
(26; ¢®)n+1(0% @) g1 2234+
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and the generating function for the second case is

2q e 2qPF 5 ¢Pr3 1 ak
1—26]1—(13 1_zq3k—51_q3k—31_zq3k—2
2Pkt S 1 e P iias Pt
1 — 2Pkl q 1 — k3 1 — zqBk+d "] — ygdntl ] — g3n+3
7 e 2q* 231 s ' @1 - ¢ 1
1—2¢g1—q31—2¢*" "~ 1—z¢g3"+1 1 — g3nt3 z q3k+3
ntl q3n2+7n+4 1_ q3k 0,

(24, ) n1(0% )1 2¢3F

If the special units are the last two basic units, then it has the form:
1 1
AM>A=A3> > X355 > A3pn—a = A3n—3 > Azn—2 > A3n—1 > A3 > Agng1 > Agng2 > Asnt3, (Aspgs > 0),
or the form:
1 1
AM>A=A3> > X355 > A3pna = A3n—3 > A3n—2 > Azn—1 > A3 = A3nt1 > Agng2 > Asnt3, (Aznys > 0).

By considering conjugates of such partitions, the standard partition analysis gives the generating function for the first case is

2q q3 Zq3n75 q3n73 1 ne1 q3n . 1  3ng2 q3n+3
1— zq 1— q3 1= Zq?m—s 1— q?m—S 1— Zan—2 1— q?m 1— Zq3n+1 1— q3n+3
2q q3 Zq4 Zq3n+1 q3n+3 q2
T1—2ql— B l—zgt L2t — Pt 22
Zn+1q3n2+7n+4 ¢
= —— =. 21
(265 ®)n+1(0% @%)ns1 22
And the generating function for the second case is
4 ¢ A L T B R T i
1—2q1— q3 1 — zq3”_5 1— q3n—3 1— Zan—2 1— Zq3n+1 1— q3n+3
B 2q q3 Zq4 Zq3n+1 q3n+3 q3(1 _ an)
1—2q1—q31—2¢* "1 — zg3ntl 1 — g3nt3 z
2
_ ZnJrqun +7Tn+4 q3(1 _ q3n) (22)
(24 )41 (65 % )na z

Add up (19) and (20), summing k from 1 to n — 1 and then add them to (21) and (22), the sum is

2 1
Zn+1q3n +7n+4 nz ( 1 N 1— q3k> N <q2 N q3(1 _ q3n)>
(24 ¢*)n41(0% @ )nr \ o \22@3FHE 2%k 22 2 ’

Which is the term (5) in Lemma 2.2. When special units are not the last basic unit, such a partition has at least three basic
S ( 1 N 1_ q3k>
P 22¢3k+1 23k )

¢ *1-q")
S —
z z
corresponds to the special units being the last two basic units, it implies A has at least two basic units, hence n > 1. In the

following cases, we have similar analysis on inequalities involving n.
Distance 1. In this case, the two special units must appear in the following form:

units, hence in the term

n should satisfy n > 2. The term
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1 1
Ask—2 = Ask—1 > Ask = Ask+1 > Ask42 = A3k+3 > Ask+42> Ask+5 > Ask+6,
if any special unit does not appear as the last basic unit, hence k can take from 1 to n — 2, or the form:
1 1
A3n—5 = Agn—a4 > A3n—3 = Agn—2 > Asn—1 = Asn > Agn+12> Asnt2 > Asn+s,

if one special unit is exactly the last basic unit. The generating function for the former is

2q ¢ 23k 3 1 1. 1 ' P ias! . PRlan
1— 2q 1— q3 1— Zq3k—5 1— qSk—S 1— Zq?)k—2 1— q3k 1— Zq3k+1 1— q3k+3
. 1 ks 1 . Zq3k:+7 Zq?)n—i-l q3n+3
1 — zg3k+4 q 1— @3k+6 1 — zg3h+T ] — gBntl ] — g3nt3
2q q3 Zq4 zq3n+1 q3n+3 1
Tl g1 — Pl —2qh T gl _ gan+3 2 0k
Zn+lq3n2+7n+4 1
= n>3 23
(2¢; @ )nt1(4%; @3 )ny1 22¢0K+ (n23), 23
and for the later is
2q q3 Zq3n—8 q3n—6 1 . q3n—4 . 1 .
1—2q1—¢3 1 — 2q3n—8 1 — 3161 — zg3n—5 1 — g3n—3
Zq3n—2 . q3n - 1 ani2 q3n+3
1— Zq3n—2 1— q3n 1— Zq3n+1 1— q3n+3
2q q3 Zq4 Zq3n+l q3n+3 1
Tl—z2ql— Pl —zqt 1 — g tl ] — g3 2g3n5
Zn+1q3n2+7n+4 1
= n > 2). (24)
(2¢; ®)nr1(0% @3 )1 224377 ( )
Sum (23) for k from 1 to n — 2 and then add it to (24), we get the term
zn+1q3n2+7n+4 n-2 1 1
n>3)+ 55—=(Mn>2)
(2¢;¢*)n+1(6% ¢ ) ntr ,; 22Okt 22qPn? ’
which is the term (6) in Lemma 2.2.
Distance d satisfies 2 < d < n — 2. The two special units must appear in the form:
1 1
A3k—2 2> A3k—1 > A3k = A3k41 > A3kt2 = A3k43 > 0 = A3k43d > A3k43d1 = A3k43d+2 > A3k43d43,

corresponding to the last special unit being not the last basic unit, hence k can take from 1 to n — d — 1 for fixed d, or the form:

1 1
A3n—3d—2 = A3n—3d—1 > A3n—3d = A3n—3d+1 > " > A3nt1 = A3nt2 > A3n4s,

corresponding to one special unit exactly being the last basic unit. The generating function for the former is

2q @ 2qPF—5 ¢Fr3 1 S P s pq3h+3d=2
T—2ql—q " 1—2gk51— k31— o2 1 1T— @k 1= 2okl " 1 pqok+ad—2
g3r+3d 1 St 32 1 2Bk tBd+a 2?1 s
1 — gPkH3d ] — R3] (1 — PR3AE3 ] — Rk E3dtA T — ygdntl ] — g3nt3
7 2q q3 Zq4 Zq3n+1 q3n+3 ' 1
1= 2q1—q31— z¢* 1= 2q3n+1 1 — g3n+3 Z2q6k+3d+1
Zn+1q3n2+7n+4 1
= 2<d<n—-2,1<k<n-d-1). (25)

(ZCE q3)n+1(q3§ q?’)nﬂ 22q6k+3d+1 ’
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And for the later is

zq qS q3n—3d—3 1 3n—3d—1 1
l—z2ql—q3 ~1—@3n—3d371 _ ygdn-—3d-2 1 — g3n3d
Zq3n73d+1 q3n . ey q3n+3
1— Zan—?)d—i-l e 1— an 1— Zq3n+1 1— q3n+3
7 2q q3 Zq4 Zq3n+1 q3n+3 ' 1
11— 2q1 — q3 1— zq4 1= Zq3n+1 1— q3n+3 Z2q3”_3d_2
Zn+1q3n2+7n+4

Foreach2 < d <n—2,sum (25) for k froml1ton—d—1
and then add up the term in (26) corresponding to d, we get the
term (d) in Lemma 2.2.

Distance n — 1. This is the last case of Lemma 2.2, it
corresponds to the distance n — 2 being maximal. Hence one

 (
(24 ¢®)n+1(¢%; @3 g1 22¢3n—3d=2

2<d<n-—1). (26)

special unit is the first basic unit and another special unit is the
last basic unit. X has the form:

1 1
A=A > A3 2> A8 > -0 > Aspg1 2 Agng2 > Azpgs.

The generating function is

1 2 1 zq* 1 3n+2 ¢t
1—2q q1—q31—zq4”'1—q3"1—zq3”+1 1—g3nts
_ 2q q3 Zq4 Zq3n+1 q3n+3 . i
1—2qg1—¢31—2¢*" " 1—2¢3"t1 1 — 313 22g
Zn+1q3n2+7n+4 1
(246 n1(0% 4% 220
Which is the term (9) in Lemma 2.2. We complete the proof d = distance), one special unit must be the last unit and

of Lemma 2.2.
Proof of Lemma 2.3. The analysis above holds for the case
of X\ has length 3n 42, except that in each case (0 < d < n—1,

)‘3n+2 =1.
We use the case of distance 0 to illustrate them. A has the
form:

1
A > A =A3> > X390 > A3t > Agn > Azl > Aspg2, (Agng2 = 1),
or the form:
1
AL > A =A3> > X302 > A3t > Agn = Asna1 > Asng2, (Aspg2 = 1).

The generating function for the former is

3 3n—3

24 g q L e " 1 3nt2
1_Zq1_q3"'1_q3n731_zq3n72 1_q3n1_zq3n+1
_ oz e 2q* 2?1 f
1—2q1—¢q31—2¢*" " 1—z2¢3nt1 22
Zn+1q3n2+4n+1 q?
= =. (27)
(2¢; ®)n+1(%5 ¢%)n 22
The generating function for the later is
2q ¢ ¢ ? 1 ano1 2" 4
1—2ql—g " 1—g@n31—zpn21 1— ogontid
_zq q3 Zq4 Zq3n+1 qS(l _ an)
C1l—2ql—g31—z¢* 1 — zg3ntl 2
2 P
_ Zn+1q3n +4n+1 q3(1 _ an) (28)

(2¢; ) n1(0% ¢)n z
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Add up (27) and (28), we get the term (10) in Lemma 2.3.
Such a partition has at least two basic units, hence n > 1. By
the similar analysis in Lemma 2.2, we find that for the cases
of distance from 1 to n — 1, partitions with length 3n + 2 and
one special unit is the last unit can be obtained from partitions
with length 3n + 3 and one special unit is the last basic unit
by omitting the part A3, 3 and letting A3, +2 = 1. Therefore,
in each case, the generating function for partitions with length
3n+ 2 and one special unit being the last basic unit is the same
as that of the partitions of length 3n 4 3 with one special unit
being the last basic unit except without the factor

q3n+3

1— q3n+3 :

They correspond to the terms (11) to (14) in Lemma 2.3.

We complete the proof of Lemma 2.3.

Proof of Lemma 2.4. Since such a partition has length 3n+-1,
hence the last basic unit can not be a special unit. Therefore,
the range of distance between two special units is from 1 to
n — 2. As the analysis of the partitions with length 3n + 3,

21

we find in each case (distance from 0 to n — 2), partitions with
length 3n + 1 and the last basic unit is not a special unit can
be obtained from the partitions with length 3n + 3 and the
last basic unit being not a special unit by omitting the parts
Asn+3 and Az, 2. Therefore, the generating function, for each
0 < d < n — 2, for partitions of length 3n + 1 and the last
basic unit being not a special unit can be obtained from the
generating function for partitions with length 3n + 3 and the
last basic unit being not a special unit by omitting the factor

q3n+3

1 — g3nt3’

These correspond to the terms (15) to (18) in Lemma 2.4.

We complete the proof of Lemma 2.4.

We next consider the Case B.

Lemma 2.5 The generating function for the number of
partitions with the given length and alternating sum types
(%,2) and belonging to Case B is the sum of the following
four terms.

ol q3n2+7n+4 n ;
— (n > 1), forlength 3n + 3, 29)
(2¢;¢®)n+1(¢% @) nv1 2 ( ) £

Sl q3n2 +7n+4 q3n+3

ot i@yt 2 2 0 forlengthdn 43, GO
n+1 3n2+4n+1
(Z; q3)q+1(q3. 5 Z (n > 1), for length 3n + 1, 31)
Sl q3n2+4n+1 q3n+3

(n > 0), for length 3n + 2. (32)

(24, 3)n1(® )0 2

Proof of Lemma 2.5. In Case B, each partition has only one special unit. We still consider three partitions classes by their
length 3n + 3, 3n + 2 and 3n + 1, where n > 0. In each class, the special unit can be the last basic unit or not.

Length 3n + 3. X has the form:

AL> A2 =A3> - = A35_3 > A3p—2 > A3p—1

or the form:
A >XA=A3> = A3, >

The generating function for the former is

2
> A3k > Aspg1 > -0 = Agng3, (1 <k <n),

2
A3nt1 = Aznt2 > Agpya.

2q q3 qu—3 1 b2 1 . Zq3k+1 Zq3n+1 q3n+3
1,Zq17q3"'1,q3k73172q3k72q 1,q3k 1—zq3k+1"'l—zq3"+11—q3"+3
2q q3 zq4 Zq3n+1 q3n+3 1

:lfqu—q31—zq4"'lfzq3"+1lfq3"+3;

n+1,,3n2+7n+4 1
= 4 Z (1<k<n).

(2463 n+1(¢%¢%)nt1 =

The special unit can be any k" basic unit, 1 < k < n, so we get the term (29) in Lemma 2.5 by adding them. The generating

function for the later is
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2q q3 q3n 2 3n+1 1 6ntd q3n+3
1— 2q 1— q3 : 1— an 1— Zq3n+1 Zq3n+1 1— q3n+3
2q q3 Zq4 2 3n+1 q3n+3 q3n+3

:1—zq1—q31—zq4

B Sl q3n2+7n+4 q

3n+3

(2P 1 (B Py 2

We get the term (30) in lemma 2.5.

Length 3n + 2. Special unit in A must be the last basic unit.
We note that such partitions can be obtained from partitions
belonging to the Case B with length 3n+ 3 and the special unit
being the last basic unit by omitting the part A3, 43 and Letting
Asn4+2 = 2. Hence the generating function for partitions
belong to the Case B with length 3n 4 2 and the special unit
being the last basic unit can be obtained from the generating
function for partitions belong to Case B with length 3n+ 3 and
the special is the last basic unit by omitting the factor

q3n+3

1— q3n+3 .

So we get the term (32) in Lemma 2.5.

Length 3n+1. In this case, the special unit can not be the last
basic unit. As the analysis above, we find that such partitions
can be obtained from partitions belonging to the Case B with
length 3n + 3 and the special unit being not the last basic unit

Sl 3n2+7Tn+4

n+1,3n%+4n+1

"1zt — pBnt3

(n>0).

by omitting the part A3, 43 and the part A3, 2. Hence the
generating function for partitions belong to the Case B with
length 3n + 1 and the special unit being not the last basic
unit can be obtained from the generating function for partitions
belong to Case B with length 3n + 3 and the special being not
the last basic unit by omitting the factor

q3n+3

1— q3n+3 :

It corresponds the term (31) in Lemma 2.5.

We complete the proof of Lemma 2.5.

Now the generating function for a(, 2; n) will be the sums
of all terms in Lemma 2.2, Lemma 2.3, Lemma 2.4 and
Lemma 2.5 involving 3n + 3, 3n + 2, and 3n + 1, and adds
them together where n runs over the ranges indicating in these
lemmas. We firstly compute the sum of terms only involving
L 1tis

n+1_3n2+7n+4

n P q q3n+3

Z 3q33 ﬁ

(245 @) n+1(0% @) g1 2
n>1

I R
n>

(265 P )n+1(6%5 %) 2

¢ (20:¢*)n41(¢% Phngr 2

Zn+1q3n2+4n+1 g3 +3 . Zn+1q3n2+7n+4 YS 1_ q3k N Z Zn+1q3n2+7n+4
0 CE )@ 2 S GG (@) o 26 S (266%)n11 (6% 6 nin
q3(1 o q3n) Zn+1q3n2+4n+1 q3(1 . q3n) Zn+1q3n2+4n+l n—1 1— q3k
D DY oy ST 77 PP DY e e D
n>1 ’ n+1 ) n n>2 ) n+1 ) o
= Zterms(n >2)+ Z terms (n = 1) + Zterms (n=0).
After using the identity
n+1 ,3n24+7n44 Hntl 3n24+4n+1 Zn+1q3n2+4n+1 1

> o

q
A+
= (36 6)n41(6% 6% ;2:2 (2¢; ®)nt1(a% ¢*)n

¢ (2¢; )10 ¢%)n 1 — 43

we have
Zn+1q3n2+4n+1 1 n Zn+1q3n2+4n+1 1 q3n+3
terms(n > 2) = ~ 4 .
2 ,; (24 ¢* )41 (%5 ¢%)n 1 — ¢*" 13 2 Z:Q (24:¢*) (% ¢%)n 1= g3 2
Z n+1 3n2 +4n+1 qd(l _ q3n)
=5 CE ) ni1(d%¢%)n 1 — ¢4 z

Zn-i—l 3n? +4n+1

q
+Y s
= (zq;¢®)

nt1(@3¢3)n 1 —q

1— g3
3n+3 Z 2q3F

k=1



International Journal of Theoretical and Applied Mathematics 2022; 8(1): 14-29 23

_ Z n+1q3n2+4n+1 1 (n N q3(1 _ q3n) . PRURE . n—1 1— qSk
=3 GG )1 (a%6%)n 1= g3\ 2 z e
_ Z 2q q3 zq4 q3n 1 nq3n+1 q3n+4(1 _ q3n)
e l—zql = 1—2¢" " 1—¢" 1 —zg>+ \1—¢*nH3 1—g3nt3
N q6n+4 N q4(1 _ q3n73) (1 _ n)q3n+1
1— q3n+3 (1 _ q3n+3)(1 _ q3) 1— q3n+3
3 Zq4 an 1 q4
1—zq1—q31—zq Tl =gl = zgdntl | 1 — g3
And
Zterms(n =0)+ Zterms(n =
I S S B S ¢ 4 2 ¢zt 1 P-¢)
1—2q1—q¢3 1—2q1—¢®1—2¢* \1—-¢% 1—¢f 1—2q1—q31—2¢*1—¢ z
1 g 2 ¢ 1 g

:l—qu—q3+1—zq1—q3l—zq41—q3’

Combine it with the last equality above, we get the sum only involving % is

Z 2q q3 Zq4 q3n 1 q4 (33)
Zl-zql = l—z¢" " 1=¢"1—z¢>t | 1-¢>
Now we compute the sum 1nV01v1ng in Lemma 2.2 lemma 2.3 and Lemma 2.4. After using the identity
Zn+1q3n2+4n+1 q3n+3 as Zn+1q3n2+4n+1 A Zn+lq3n2+4n+l 1 A
(2¢; ) ns1(¢% ) 1 = ¢3nF3 (2¢;¢®)n+1(2% ¢%)n (2¢; ) n+1(¢% ¢3)n 1 — ¢3nF3
We find there are four sums involving z%, three sums of them are
Q.2
Z Zn+1q3n +4n+1 1 ﬁ (34)
N\ (2661 (63 ¢%)n 1 — 343 | 22

Z7z+1q3n2+4n+1 1 n—1 1
Z<( P 2 g (35)

S \ @ @) n1(6%6%)n 1 — gon 2

> gttt ! L (1+ S > (36)
S\ GG (@67 1= ¢ ) 22 \q ¢ ¢n=o )’

and the fourth is the sum of the following n — 2 terms:

Zn+1q3n2+4n+1 1 n—2 1
O P )

S\ GG ) (@ ¢%)n 1 = |

Z”+1q3"2+4n+1 1 n—3 1
‘ 38
+ Z (2¢; ) nt1(¢%¢3)pn 1 — ¢3nH3 Z 22g6k+T (38)

n>4 k=1
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s (24:¢*)n41(6% ¢%)n 1 — g*n 3 | £ 22¢0k+10
+...
ZnHlgdn?+an+1 1 n—(n-1) )
+T;; <(ZQ§q3)n+1(q3;q3)n 1-— q3"+3> ];1 W

(39)

(40)

Where the last term (40) corresponds to the case that the distance between two special units is n — 2 and the last unit is not a
special unit, there is only one case, corresponding to £ = 1, hence n > 2. So the range for sum is n > 3 in (40). Note that the

case of the distance zero already appears in (37) (the term of k = n — 2). Now

The first sum = Z

Zn+1q3n2 +4n+1 1 q2
(2¢;®)n+1(¢% %) 1 — ¢3n+3 | 22

n>1
B q3 Zq4 Zq3n72 q3n Zq3n+1 1 q2
_n>1 1—2q1— q3 1— zq4 1 — Zq3n—2 1— q?m 1— Zq3n+1 1— q3n+3 2
2q q3 an—S 1 q3n—2 q3n 1 q3n+1 q
:n> (lquq T 31— agn— 2)' T " T_gn 1 _apntl 1T_gn3 1
3n—3 3n—2 3n 3n+1
2q q 1 q q q q
- (1 1331 3n2)' 11 g (L4 2¢7" ) 1_g3nt3 1
o1 —2q —q —2q —q —q
B 2q ¢ g3 q g3+t ¢ .
7>1 1—2’(]1—(]3 ' 1_q3n 31—2’(]3”2 1_q3n 1_q3n+3 1
nz
2q q3 an—S q 3n zq3n+1 q3n+1 q
n>1(12q1q3 . 1,q3n31,zq3n 2) q3n'172q3n+1'1,q3n+3'T
B - 2q ¢ @3 q . g3t ¢
_n>1 1—zq1—q3” l—q?’” 31_2q3n2 1_q3n 1_q3n+3 1
N 2q ¢ el q3n+1 g3+t . f
= 1— 2q 1— q3 1 _ q3n 1— zq3"+1 1 _ q3n+3 1
nz
2q q3 an—S 9n+1
:n21(12q1q3"'1 31— o2 1,q3n (1 — ¢3nt3)
N 2q q3 q?m 6n+4
=~ 1— 2q 1— q 1 _ q3n 1— Zq3n+1 1— 3n+3
Let
A _ 2q q3 q3n73 1
1—zq1—q3 '1_q3n—31_zq3n—2’
P ¢>" 1
2_1fzq1—q3 1 — g3 1 — gg3ntl”
3 4 3n+1 n—1
2q q 2q 2q 1 ) 1
The second sum = - —_—
T; (1 — 2q 1— q3 1— zq4 1— zq3”+1 1— q3n+3 ; 22q3k+1
¢33 1 o2 el 1 Peias noly
_;(12(] o q3n312q3n2) I 1—¢g3n 1—zgntl 11— g3nt3 ';qgkﬂ
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g2 " _— g3t noloy
j— n
_ZAl - .1_q3n.(1+zq +...)-1_q3n+3.zq3k+1
n>2 k=1
3n—2 3n 3n+1 1 1 1
:ZAlq : 3n ! 3n+3'<4+7+"'”L 3n 2)
s L 1-q l—q ¢ q q
N Z A q3n—2 . q3n . Zq3n+l . q3n+1 . i R 1
~ LT L= 1—zg3ntl 1 —gnt3 \ g4 g7 32
n>
1
— Al . q6n+1 + an+4 et q9n—5
7%:2 (1 _ an)(l _ q3n+3) ( )
+ Z A2 s (q3n+4 P q6n72)
n>2
_ Z ( q3n—3 1 ) q6n+1(1 _ q3n—3)
= 1 - zq 1 — 1— 331 — 2372 ) (1 —¢3)(1 — ¢ +3)(1 — ¢3)
N Z < 3 q?m 1 ) q3n+4(1 _ q3n—3)
2\ T2 1= T= g 1= 21 (L= @)1= )
4 3n+1
. zq 2q 1 1 /1 1 1
Thethlrdsum— i P e _
n>2(1—zq1—q31—zq 1_Zq3n+11_q3n+3> 22 <q+q4+ J'_q?mfo
1 q3n72 qdn 1 q3n+1 1 1 1
;( 1—2¢ " 1— 23 2) 1 '1_q3n'1_zq3n+1'1_q3n+3'<q q74+.”+
3n 3n+1 1 1 1
— 3n+1 q
n>2
B Z A q3n—2 an q3n+1 1 1 + 1 N
_n>2 L 1—g®n 1—gnt3 g ¢4 g5
B A q3n72 an Zq3n+1 q3n+1 1 1 1
Z:? T T e - R q7+"'+q3n5
nz
1
_ A, (gt g gt g o2
ngz (1—¢3)(1 — ¢3n+3) ( )
1
n>2 q
_ 2q qS q3n73 1 q6n+4(1 _ q?mf?))
= 1—zq1—q 1= q3n 31— 3n 2 (1_q3n)(1_q3n+3)(1_q3)
N Z ( 2q q3 q?m 1 ) 3n+7(1 _ q3n—3)
n>2 1—2g1—¢3 1— g3 1 — 2371 ) (1 — 3 3)(1 — )
Before computing the fourth sum, we first compute the d*" term in the fourth sum:
h Z 2q @ 2q* zgintl 1 nil 1 1
The d*? term = ( . > -
_ — 31— 24 — g3+l _ 43n+3 2 o6k+3d+1
nodia 1—2q1—¢q¢°1—2q 1—zgontt 1 — g = °q
1 q3n72 qdn 1 q3n+1 n—d—1 1
7n>Z:d+2 ( 1_ Zq3n—2) T 1_gn 1_apntl 1_gents’ ; (OF+3dF1
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3n—2 3n 3n+1 n—d—1
— 4 4 3n+1 q 1
=D ATy O ) T )
n>d+2 Pt
3n—2 3n 3n+1 n—d—1 1
-y 4 S ——
1 1— g 1— g3nt3 Ok F3d+1
n>d-+2 k=1
3n—2 3n 3n+1 3n+1 n—d—1 1
T T L L LSS < R S
1 1— q3n 1— Zq3n+1 1— qdn+3 q6k+3d+1
n>d+2 k=1
1
— A : ‘ (PR | 3nBd10 L (on—3d-8
n;;ﬂ (1 _ an)(l _ q3n+3) ( )
+ Y A pere R CHL AR R )
n>d+2

_ Z ( 2q q3 q3n—3 1 ) . q3n+3d+4(1 _ qﬁn—ﬁd—ﬁ)
(

_ 371 43n—31 _ 3n—2 _ A3n _ 43n+3 _ 46
n>d+2 l1—2¢1-gq l—gq 1 —2zq 1-¢")(1—¢q )(1—¢)

N Z < 3 an 1 > q3d+7(1 _ q6n76d76)
it —qu—q 1= 1=zt ) (1= g3 (1 - ¢f)

2q ¢ 3 n—2 3n+3d+4(1 qﬁn—ﬁd—ﬁ)
Therefore, the fourth sum = .
;(1—qu—q 1 gt 31—2613” 2) ; (1=¢*)(1 = g*+3)(1 - ¢°)
2
. 2q e el n— PUT(1 — ¢on—6d—6 )
1— 2q 1— C] ! 1 _ q3n 1— Zq3n+1 1 371+3)(1 _ q6)

=1

>3
2q q3 q3n—3 3n+7 q3n—3)(1 _ q3n—6)
172q17q3 1 — q3n 31— 3n 2 q3n+3)(1,q6)(1,q3)

2q q3 q3n 1 10(1 an 3)(1_q3n76)
I—2q1—¢ 11— 2 ) (1— @)1 — )1 ¢*)

n

n>3

n

I \/

Now the sum of four sums is the first sum--the second sum+ the third sum-the fourth sum indicated above. Since in the four
sums, the common range of n is n > 3, so we first consider the four sums over all n > 3, and then consider terms corresponding
ton=1andn = 2.

The first sum restrict to n > 3 + the second sum restrict ton > 3

+ the third sum restrict to n > 3 + the fourth sum restrict to n > 3
_ Z 2q q3 q?mf?: 1 q9n+1
1— 2q 1— q3 e 1— q3n—3 1— zq3"_2 (1 _ q3n)(1 _ q3n+3)

N Z q3n 1 q6n+4
172,(]1,(1 "'17q3n172q3n+1 1,q3n+3

n>3
n>3
N q3n 1 q3n+4(1 _ q3n73)
= 1— 2q 1 _ q R q?m, 1— zq3”+1 (1 _ q37z,+3)(1 _ q3)
n

q3n73 1 6n+1(1_q3n 3)
l—qu—q 1_q3n 31— 3n 2 (1_q3n)(1_q3n+3)(1_q3)
<1zq1q 371 —g3n31 —

P 1 (1 — ¢?n3)
@2 ) (1= (1— @3 (1 — )
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q3n 1 q3n+7(1 _ q3n—3>
AT T T (1= 3) (1= ¢%)

("
( ¢*"? ) ¢ = g1 = ¢
= =

+
(]

S
V
w

+
™

1—zq1—q "1_q3n 31— 3n 2 1_q3n q3n+3)(1_q6)(1_q3)

n>3
N Z an 3n 3)(1 _ q3n76)
= 1—2zq 1 _ q 11— Sn 1— Zq3n+1 3n+3 1 6)(1 _ q3)
_ _A1 ( q9n+1 N 6n+1( 3n 3)
= (=) (1 —¢*+3)  (1—-¢*)(1 - 3’”3)(1 a*)
N q6n+4(1 _ q3n73) N q3n+7(1 _ q3n73)(1 _ q3n76) >
(I=¢*)A=¢")1—-¢*)  (1-¢*)(1—¢")(1—¢*)(1—g¢*"+?)
N Z A2 ( 6n+4 q3n+4(1 - q3n73) N q3n+7(1 o q3n73) N qlo(l _ q3n73)(1 o q3n76) )
= @t A=) (1 =¢®)  A—¢*)(1-¢%)  (1—-¢*)(1—q¢%)1—¢**)
3n+7 3n
q ")
= Al— + AQ—.
nzz:?, (1- Z —q°%)
But 3n+7 3n+10
q" q"
Al = Ay,
LT - 2T
Hence

The first sum restrict to n > 3 + the second sum restrict ton > 3
+ the third sum restrict to n > 3 + the fourth sum restrict ton > 3

B 2q q3 zq4 q6 1 16 3n+10 qlo(l _ an)
- 3 1 6 +Z +ZA2 3 6
1-2q1-¢*1—2¢"1-¢°1—2¢" (1 -¢3)(1—¢5) N1=q¢%) = (A=) %)
2q qS zq4 q6 1 q16 q10

(41)

= + AQ—-
1—2¢1—¢31—2¢*1—¢%1—2¢" (1 —¢3)(1 —¢%) ; (1—¢3)(1-¢5
Now we consider the sum of terms n < 2, their sum is

the first sum restrict to n < 3 + the second sum restrict ton < 3
+ the third sum restrict to n < 3 + the fourth sum restrict to n < 3

i( 2q ¢ ¢33 1 > gortl
- _ 37 _ 3n-37 _ 302 — 3 — _3n+3
S \l—2ql=¢ 11— 31 —2¢"2 ) (1= ¢*)(1 - ¢*"+?)
N Z 2q q3 an 1 q6n+4
— 1_zq1_q3"'1_q3n1_zq3n+1 1_q3n+3
Z < 2q q3 q3n73 1 > q6n+1(1 _ q3n73)
+
—~ 1— 2q 1— q3 1— q3n—3 1— zq3"_2 (1 _ qS")(l _ q3n+3)(1 _ q3)
2 P . E PV
N Z 2q qS qdn 1 q3n+4(1 _ qdn 3)
—~ 1— 2q 1— q3 1 — q3n 1— Zq3n+1 (1 _ q3n+3>(1 _ qS)
2 . a . o
N Z 2q qS qdn 3 1 q6n+4(1 _ qdn 3)
1— 2q 1— q3 1 — q3n—3 1— zq3"_2 (1 _ qS")(l _ q3n+3)(1 _ qS)



28 Ya Gao and Xinhua Xiong: An Analytic Proof of Some Part of Keith-Xiong’s Theorem

2 n n n—
N Z 2q q3 q3 1 q3 +7(1 _ q3 3)
1_Zq1_q3"'1_q3n1_zq3n+1 (1_q3n+3)(1_q3)

n=2
1 g\ Lz 7 1 " Lz 7 1 10
1-2¢(1-¢*)(1-¢%  1-2¢1-¢1-2¢"(1-¢%)(1-¢°) 1-2¢1—-¢>1—2¢"1—¢"
¢ 2q* ¢ 1 q' L E 1 it
1—2¢g1—¢31—2¢*1—¢%1—2¢"1—¢° 1—2qg1—¢31—2¢* (1 —¢%)(1—q")
2 ¢ 2q* 4 1 At Lz 7 1 '
1—291—¢31—2¢*1—¢%1—2¢"1—-¢° 1—291—¢31—2¢* (1—¢%)(1—¢°
2 P 2q* 4 1 e
1—2q1—¢31—2¢*1—¢%1—2¢"1—-¢°
B 1 L P 1 10 Lz 7 2q* 4 1 g'°
C\l-z2¢ 1—2q1—-@31—2¢") 1 —3)(1—¢5) 1—2¢q1—q31—2¢*1—¢q51—2¢"1—¢3

Combine (41) with (42), we get the sum only involving Z—lz is

3 zq ¢ 2t e 1 q

1—2¢1—¢*1—2¢" "1 =g 1 —z¢>+ | (1-¢°)(1—¢5)

10

n>0

Therefore, the generating function for the partitions with repeated times < 2 and alternating sum types (X, 2) is

1 1
Z a(X,2;n)2>¢" = the sums involving— + the sums involving—
z z

¥,n>0
=(33) + (43)
_ Z 2q q3 zq4 q3n 1 q4
Sl-zql—¢*l—z¢" 1P 1 —2g | (1-¢%)(1—¢°)
But the function X . 5
Z 2q g 2q q" 1
l—zql—¢*1—zq* Tl — g3 1 — gt

is exactly the generating function of a(3, 0;n)! Since the general term

2q P 2q* P 1

1—2q1—¢31—2¢*" " 1—¢3" 1 — zg3n 1!

(42)

(43)

generates all partitions with pure type (X, 0) with length 3n or 3n+1: the generating function for partitions with pure type (X, 0)

and length 3n (by considering their conjugates) corresponds to

2q q3 Zq4 an

1—2qg1—¢q31—2z¢* " 1—¢3n

and the generating function for partitions with pure type (X, 0) and length 3n 4 1 corresponds to

zq q3 zq4 q3n (qun,+1 + Z2q6n+2 +... )

1—2q1—q31—z2¢* " 1—¢3n

Hence we proved a(3,2;n) satisfies the same relation as 3, Conclusion
b(2,2;n).

The proof is completed. We use ¢-series and generating function theories to provide
an analytic style proof for m = 3 and alternative sum type
(3,2). Our method is verifying the generating functions of
both sides satisfying the same recurrences. According to this
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method, we can also get more general results, but because the
counting process is more complicated, we will not give the
proof process here, and those who are interested can try to
count.
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