

Internet of Things and Cloud Computing
2022; 10(1): 12-28
http://www.sciencepublishinggroup.com/j/iotcc
doi: 10.11648/j.iotcc.20221001.12
ISSN: 2376-7715 (Print); ISSN: 2376-7731 (Online)

Survey the Storage Systems Used in HPC and BDA
Ecosystems

Priyam Shah, Jie Ye, Xian-He Sun

Computer Department, Illinois Institute of Technology, Chicago, USA

Email address:

To cite this article:
Priyam Shah, Jie Ye, Xian-He Sun. Survey the Storage Systems Used in HPC and BDA Ecosystems. Internet of Things and Cloud

Computing. Vol. 10, No. 1, 2022, pp. 12-28. doi: 10.11648/j.iotcc.20221001.12

Received: March 25, 2022; Accepted: April 28, 2022; Published: May 19, 2022

Abstract: The advancement in HPC and BDA ecosystem demands a better understanding of the storage systems to plan
effective solutions. The amount of data being generated from the ever-growing devices over years have increased tremendously.
To make applications access data more efficiently for computation, HPC and BDA ecosystems adopt different storage systems.
Each storage system has its pros and cons. Therefore, it is worthwhile and interesting to explore the storage systems used in
HPC and BDA respectively. Also, it’s inquisitive to understand how such storage systems can handle data consistency and fault
tolerance at a massive scale. In this paper, we’re surveying four storage systems: Lustre, Ceph, HDFS, and CockroachDB.
Lustre and HDFS are some of the most prominent file systems in HPC and BDA ecosystem. Ceph is an upcoming filesystem
and is being used by supercomputers. CockroachDB is based on NewSQL systems a technique that is being used in the
industry for BDA applications. The study helps us to understand the underlying architecture of these storage systems and the
building blocks used to create them. The protocols and mechanisms used for data storage, data access, data consistency, fault
tolerance, and recovery from failover are also overviewed. The comparative study will help system designers to understand the
key features and architectural goals of these storage systems to select better storage system solutions.

Keywords: HPC, BDA, Storage Systems, CockroachDB, HDFS, Ceph, Lustre

1. Introduction

Storage Systems are an integral part of any architecture. In
general, they can be defined as a combination of storage
devices (hardware) and file systems (software). The
advancement in HPC and BDA ecosystem demands a better
understanding of storage systems to plan effective storage
solutions. The applications of HPC and BDA may have
remained the same but the amount of data being generated
from the ever-growing devices over years has increased
tremendously. In order to make applications optimize data
usage efficiently, HPC and BDA ecosystems adopt different
storage systems. Each storage system has its pros and cons.
Therefore, It is worthwhile and interesting to explore the
storage systems used in HPC and BDA respectively. Also,
It’s inquisitive to understand how such storage systems can
handle data consistency and fault tolerance at a massive scale.
In this paper we have surveyed four storage systems Lustre,
Ceph, HDFS and CockroachDB. We reviewed Lustre and
HDFS because they’re the most prominent file systems in

HPC and BDA ecosystem. Ceph is an upcoming filesystem
for HPC and is being used by supercomputers. CockroachDB
is based on NewSQL RDBMS systems a recent technique
which is being used in the industry for BDA. To understand
the differences between the older and newer filesystem
techniques we selected above four storage systems.

Unfortunately, processor, memory, and network
technologies are evolving at varying speeds. Clock
frequencies do not increase significantly over the years, and
even Moore's Law slows down as technology reaches its
economic and physical limits [5]. However, due to the heavy
use of parallel processing and distributed computing,
computing power continues to grow dramatically [6]. The
same doesn’t apply to storage technology. They have not
benefited from comparable advances, so only a small portion
of the calculation results can be permanently stored [7]. This
discrepancy is sometimes referred to as a memory wall. This
requires the user to determine what information is considered
worthwhile to store [8]. In addition to storage challenges,
politics and practicality demand limiting next-generation

 Internet of Things and Cloud Computing 2022; 10(1): 12-28 13

exascale systems to 20 MW output [8]. According to, IDC
the sum of all digital data, whether created, captured, or
duplicated, will increase from 33 zettabytes (ZB) in 2018 to
175 ZB by 2025 [3]. The growing demand for computation
and data-intensive applications requires a better
understanding of storage systems and their bottlenecks.

1.1. Need for Storage Systems in HPC Ecosystem

Supercomputers are a valuable tool for scientific and
industrial users. They allow you to perform experiments and
gain knowledge in areas that are too expensive, too
dangerous, or impossible with other available technologies
[4]. Large-scale modeling, simulation, and analysis are used
to optimize existing technologies, glimpse the future, and
understand phenomena without direct means of imaging or
observation. Typical workloads for high-performance
computing (HPC) are climate simulation, computational fluid
forecasts, and computational fluid dynamics and finite
element methods in physics, engineering, and astrophysics
[4]. In biology and chemistry, protein folding and molecular
dynamics are particularly computationally intensive. With the
advent of precision medicine, HPC is becoming more
important at the individual level as well. To solve these tasks,
many scientific applications are frequently reading and
writing large amounts of data to the attached storage systems.
The above applications not only solve crucial problems but
also contribute to human advancements over years.

1.2. Need for Storage Systems in BDA Ecosystem

The data is processed to generate information that can be
used later for a variety of purposes. Data mining and
knowledge discovery are two areas that we have been actively
working on to extract useful information from raw data, make
predictions, identify patterns, and create applications that
facilitate decision-making [9]. However, with the advent of
social media and smart devices, data is no longer a simple
dataset that can be processed by traditional tools and
technologies [10]. The growing popularity of digitization and
the latest technologies such as smartphones and gadgets has
contributed significantly to the flood of data. Moreover, this
data is not just high in volume, but it also includes data of
varied kinds that are generated on a regular basis. The biggest
challenge in dealing with this "big data problem" is that current
or traditional systems cannot store and process such data. This
required a scalable system that could store data in a variety of
formats and process them into meaningful analytical solutions
[11]. Various technologies are available for this purpose, and
organizations can use data stores such as HBase [12], HDFS
[13], MongoDB [14], execution engines such as Impala [15]
and Spark [16], and R. Programming languages such as [17]
and Python [18]. Big data storage [19] is a general term used to
describe a storage infrastructure designed to store, manage,
and retrieve data. In such an infrastructure, data is stored for
ease of usage, access, and processing. In addition, such
infrastructure can be expanded according to the requirements
of the application or service.

1.3. File Systems

Providing reliable, efficient, and easy-to-use file systems
is one of the biggest challenges in today's HPC and BDA
ecosystems, as various scientific and social applications
generate and analyze vast amounts of data. The file system
provides an interface to the underlying storage device and
links identifiers such as filenames to the corresponding
physical addresses in the storage hardware. This allows for
more comfortable and simplified use of storage devices.
Traditionally, directories and files have been used to
implement the concept of hierarchy. In addition to the
actual file content, metadata such as file size and access
time is also managed. Several filesystems that offer a wide
range of features have been proposed and established over
the years.

The need for high-throughput simultaneous read and write
capabilities in HPC applications has led to the development
of parallel and distributed file systems. The data can thus be
distributed across a large number of storage devices and
combine special properties to increase throughput and system
capacity. However, due to the proliferation of data,
processing vast amounts of information requires a more
sophisticated and professional approach. At the same time,
new and more powerful storage and network technologies are
being developed that challenge each feature. Few well-
known file systems in HPC ecosystem include Lustre,
Spectrum Scale, BeeGFS, OrangeFS, Ceph, and GlusterFS.

The main task of the big data storage system is to support
the storage of large numbers of files and objects, as well as
the input and output operations of the stored data.
Architectures typically used to store big data include clusters
of network-attached storage and pools of directly attached
storage [19]. At the heart of these infrastructures are compute
server nodes that support the acquisition and processing of
big data. Most of these storage infrastructures support big
data storage solutions such as Hadoop [20], NoSQL [21], and
NewSQL.

2. HPC Storage Systems

2.1. Lustre

Lustre is a parallel file system that is used on
supercomputers. It is licensed under the GNU General Public
License (GPLv2) and can be extended and improved.
Because of its high performance, Lustre is used on more than
half of the 100 fastest supercomputers in the world. The
figure 1 shows the file system’s architecture which
distinguishes between clients and servers. Clients use RPC
messages to communicate with the servers, which perform
the actual I/O operations. While all clients are identical, the
servers can have different roles: Object Storage Servers (OSS)
manage the file system’s data in the form of objects; clients
can access byte ranges within the objects. Metadata Servers
(MDS) manage the file system’s metadata; after retrieving
the metadata, clients can independently contact the
appropriate OSSs. Each server is connected to possibly

14 Priyam Shah et al.: Survey the Storage Systems Used in HPC and BDA Ecosystems

multiple targets (OSTs/MDTs) that store the actual file data
or metadata, respectively. The MGS stores configuration
information for all the Lustre file systems in a cluster and
provides this information to other Lustre components. Each

Lustre target contacts the MGS to provide information, and
Lustre clients contact the MGS to retrieve information. It is
preferable that the MGS have its own storage space so that it
can be managed independently [22].

Figure 1. Lustre Architecture [30].

The Lustre Networking layer (LNet) operates above the
Lustre Network Driver (LND) layer in a manner similar to
the way the network layer operates above the data link layer.
LNet layer is connectionless, asynchronous, and does not
verify that data has been transmitted while the LND layer is
connection-oriented and typically does verify data
transmission [22].

Lustre runs in kernel space, that is, most functionality has
been implemented in the form of kernel modules, which has
advantages and disadvantages. On the one hand, by using the
kernel’s virtual file system (VFS) Lustre can provide a
POSIX-compliant file system that is compatible with existing
applications. On the other hand, each file system operation
requires a system call, which can be expensive when dealing
with high-performance network and storage devices [22].

2.1.1. Data Storage in Lustre

Figure 2. Lustre client requesting file data to write. [30]

Lustre File Identifiers (FIDs) are used internally for
identifying files or objects, similar to inode numbers in local
filesystems. An FID is a 128-bit identifier, which contains a
unique 64-bit sequence number (SEQ), a 32-bit object ID
(OID), and a 32-bit version number. The sequence number is
unique across all Lustre targets in a file system (OSTs and
MDTs). This allows multiple MDTs and OSTs to uniquely
identify objects without depending on identifiers in the
underlying filesystem (e.g. inode numbers) that are likely to
be duplicated between targets. The LFSCK file system
consistency checking tool provides functionality that helps in
verifying invalidity or missing FID. Information about where
file data is located on the OST (s) is stored as an extended
attribute called layout EA in an MDT object identified by the
FID. The above figure 2 explains a simple file write data
request made by Lustre client. First the request goes to
metadata server which returns and Extended Attribute (EA)
of object addresses then respective OSTs are contacted for
the operation all these occur over the LNet. One of the main
factors leading to the high performance of Lustre file systems
is the ability to stripe data across multiple OSTs in a round-
robin fashion.

2.1.2. Data Consistency in Lustre

Lustre file system has few consistency issues like dangling
references, orphan objects, and repeated references. The
consistency framework has the following solutions:

FID-in-LMA (Lustre Metadata Attribute): Lustre object
stores its FID in the XATTR_NAME_LMA extended
attribute (EA) for related object index mapping consistency
and self-verification.

 Internet of Things and Cloud Computing 2022; 10(1): 12-28 15

linkEA: The MDT-object stores its position (in namespace)
information (the name and the parent FID) as
XATTR_NAME_LINK EA.

Parent FID for OST-object: The OST-object stores the FID
of its parent MDT-object that references the OST-object as
XATTR_NAME_FID EA.

To verify consistency, it provides Lustre consistency
verification tools - LFSCK that can verify the objects in the
whole/partial system.

2.1.3. Fault-Tolerance in Lustre

In a high-availability (HA) system, unscheduled downtime
is minimized by using redundant hardware and software
components and software components that automate recovery
when a failure occurs. Availability is accomplished by
replicating hardware and/or software so that when a primary
server fails or is unavailable, a standby server can be
switched into its place to run applications and associated
resources. This process, called failover, is automatic in an HA
system and, in most cases, completely application transparent.

To establish a highly available Lustre file system, power
management software or hardware and high availability (HA)
software are used to provide the following failover capabilities:

Resource fencing - Protects physical storage from
simultaneous access by two nodes.

Resource management - Starts and stops the Lustre
resources as a part of failover, maintains the cluster state, and
carries out other resource management tasks.

Health monitoring - Verifies the availability of hardware
and network resources and responds to health indications
provided by the Lustre software.

Types of Failover Configurations

Active/passive pair – Figure 3 shows this configuration,
the active node provides resources and serves data, while the
passive node is usually standing by idle. If the active node
fails, the passive node takes over and becomes active.

Active/active pair – Figure 4 shows this configuration,
both nodes are active, each providing a subset of resources.

Figure 3. Lustre failover configuration for active/passive MDT [22].

Figure 4. Lustre failover configuration for active/active MDT [22].

2.1.4. Recovery in Lustre

The recovery feature provided in the Lustre software is
responsible for dealing with node or network failure and
returning the cluster to a consistent, performant state.
Because the Lustre software allows servers to perform
asynchronous update operations to the on-disk file system
(i.e., the server can reply without waiting for the update to
synchronously commit to disk), the clients may have a state
in memory that is newer than what the server can recover
from disk after a crash.

A handful of different types of failures can cause recovery
to occur: Client (compute node) failure, MDS failure (and
failover), OST failure (and failover) and Transient network
partition.

For Lustre, all Lustre file system failure and recovery
operations are based on the concept of connection failure; all
imports or exports associated with a given connection are
considered to fail if any of them fail. Following are the
recovery methods:

a) “Imperative Recovery” feature allows the MGS to
actively inform clients when a target restarts after a
failure, failover, or other interruption to speed up
recovery.

b) “Metadata Replay” feature provides information on
recovering from a corrupt file system.

c) “Commit on Share” feature provides information on
resolving orphaned objects, a common issue after
recovery.

2.2. Ceph

Ceph is a free and open-source platform that offers file-,
block- and object-based data storing on a single distributed
cluster [24]. Figure 5 shows the Ceph architecture. The
system implements distributed object storage on a base of the
Reliable Autonomic Distributed Object Store (RADOS)
system [25]. It is responsible for data migration, replication,
failure detection, and failure recovery to the cluster.
Integration of the near-POSIX-compliant CephFS file system
allows many applications to utilize the benefits and
capabilities of the scalable environment. Ceph makes use of
intelligent Object Storage Devices (OSDs). These units
provide file I/O (reads and writes) for all clients who interact
with them. Data and metadata are decoupled because all the
operations for metadata altering are performed by Metadata
Servers (MDSs). Ceph dynamically distributes the metadata
management and responsibility for the file system directory
hierarchy among tens or even hundreds of those MDSs.

A Ceph Storage Cluster consists of multiple types of
daemons [28]:

Ceph Monitor: A Ceph Monitor maintains a master copy of
the cluster map. A cluster of Ceph monitors ensures high
availability. Storage cluster clients retrieve a copy of the
cluster map from the Ceph Monitor.

Ceph OSD Daemon: A Ceph OSD Daemon checks its own
state and the state of other OSDs and reports back to
monitors.

Ceph Manager: A Ceph Manager acts as an endpoint for

16 Priyam Shah et al.: Survey the Storage Systems Used in HPC and BDA Ecosystems

monitoring, orchestration, and plug-in modules.
Ceph Metadata Server: A Ceph Metadata Server (MDS)

manages file metadata when CephFS is used to provide file
services.

Figure 5. Ceph Architecture.

2.2.1. CRUSH Algorithm (Controlled, Scalable,

Decentralized Placement of Replicated Data)

Ceph Clients and Ceph OSD Daemons both use the
CRUSH algorithm to efficiently compute information about
object location, instead of having to depend on a central
lookup table. CRUSH provides a better data management
mechanism compared to older approaches and enables
massive scale by cleanly distributing the work to all the
clients and OSD daemons in the cluster. CRUSH uses
intelligent data replication to ensure resiliency, which is
better suited to hyper-scale storage [28].

2.2.2. Data-Storage in Ceph

The Ceph Storage Cluster receives data from Ceph
Clients–whether it comes through a Ceph Block Device,
Ceph Object Storage, the Ceph File System, or a custom
implementation you create using librados– which is stored as
RADOS objects. Each object is stored on an Object Storage
Device. Ceph OSD Daemons handle read, write, and
replication operations on storage drives. With the older File
store back end, each RADOS object was stored as a separate
file on a conventional filesystem (usually XFS) [28]. With
the new and default BlueStore back end, objects are stored in
a monolithic database-like fashion as shown in Figure 6.

Figure 6. Ceph data storage high level [28].

Ceph OSD Daemons store data as objects in a flat
namespace (e.g., no hierarchy of directories) as shown in
Figure 7. An object has an identifier, binary data, and
metadata consisting of a set of name/value pairs. The
semantics are completely up to Ceph Clients. For example,
CephFS uses metadata to store file attributes such as the file
owner, created date, last modified date, and so forth [28].

Figure 7. Ceph namespace for data storage [28].

The Ceph storage system supports the notion of ‘Pools’,
which are logical partitions for storing objects. Ceph Clients
retrieve a Cluster Map from a Ceph Monitor and write
objects to pools. The pool’s size or the number of replicas,
the CRUSH rule, and the number of placement groups
determine how Ceph will place the data.

2.2.3. Data-Access in Ceph

OSDs Service Clients Directly: Since any network device
has a limit to the number of concurrent connections it can
support, a centralized system has a low physical limit at high
scales. By enabling Ceph Clients to contact Ceph OSD
Daemons directly, Ceph increases both performance and total
system capacity simultaneously, while removing a single
point of failure. Ceph Clients can maintain a session when
they need to and with a particular Ceph OSD Daemon instead

 Internet of Things and Cloud Computing 2022; 10(1): 12-28 17

of a centralized server [28].

2.2.4. Data-Consistency in Ceph

Data Scrubbing: As part of maintaining data consistency
and cleanliness, Ceph OSD Daemons can scrub objects. That
is, Ceph OSD Daemons can compare their local objects
metadata with its replicas stored on other OSDs. Scrubbing
happens on a per-Placement Group base. Scrubbing (usually
performed daily) catches mismatches in size and other
metadata. Ceph OSD Daemons also perform deeper
scrubbing by comparing data in objects bit-for-bit with their
checksums. Deep scrubbing (usually performed weekly)
finds bad sectors on a drive that wasn’t apparent in a light
scrub [28].

2.2.5. Fault Tolerance in Ceph

If an MDS daemon stops communicating with the monitor,
the monitor will wait mds_beacon_grace seconds (default 15
seconds) before marking the daemon as laggy. If the standby
is available, the monitor will immediately replace the laggy
daemon. Each file system may specify the number of standby
daemons to be considered healthy. This number includes
daemons in standby replay waiting for a rank to fail. The
pool of standby daemons not in replay count towards any file
system count [28].

2.2.6. Recovery in Ceph

a) Metadata damage and repair: If a file system has
inconsistent or missing metadata, it is considered
damaged. You may find out about damage from a health
message, or in some unfortunate cases from an assertion
in a running MDS daemon. Metadata damage can result
either from data loss in the underlying RADOS layer
(e.g. multiple disk failures that lose all copies of a PG)
or from software bugs. CephFS includes some tools that
may be able to recover a damaged file system, but to
use them safely requires a solid understanding of
CephFS internals [28].

b) Data pool damage (files affected by lost data PGS): If a
PG is lost in a data pool, then the file system will
continue to operate normally, but some parts of some
files will simply be missing (reads will return zeros).
Losing a data PG may affect many files. Files are split
into many objects, so identifying which files are
affected by the loss of particular PGs requires a full
scan of overall object IDs that may exist within the size
of a file. This type of scan may be useful for identifying
which files require restoring from a backup [28].

3. BDA Storage Systema

3.1. CockroachDB

CockroachDB was designed to create the source-available
database for both scalability and consistency [32].
CockroachDB was designed to meet the following goals:
Offer industry-leading consistency, even on massively scaled
deployments. This means enabling distributed transactions,

as well as removing the pain of eventual consistency issues
and stale reads. Create an always-on database that accepts
reads and writes on all nodes without generating conflicts.
Allow flexible deployment in any environment, without tying
you to any platform or vendor. Support familiar tools for
working with relational data (i.e., SQL). [33].

Figure 8 shows the CockroachDB Architecture, Once the
CockroachDB cluster is initialized, developers interact with
CockroachDB through a PostgreSQL-compatible SQL API.
Since there is symmetrical behavior of all nodes in a cluster,
you can send SQL requests to any node; this makes
CockroachDB easy to integrate with load balancers. After
receiving SQL remote procedure calls (RPCs), nodes convert
them into key-value (KV) operations that work with the
distributed, transactional key-value stores. [33]

As the RPCs start filling your cluster with data,
CockroachDB starts algorithmically distributing your data
among the nodes of the cluster, breaking the data up into 512
MiB chunks (ranges). Each range is replicated to at least 3
nodes by default to ensure survivability. This ensures that if
any nodes go down, you still have copies of the data which
can be used for continuing to serve reads and writes and
consistently replicate the data to other nodes. If a node
receives a read or write request it cannot directly serve, it
finds the node that can handle the request, and communicates
with that node. This means you do not need to know where in
the cluster a specific portion of your data is stored;
CockroachDB tracks it for you and enables symmetric
read/write behavior from each node. [33]

Figure 8. CockroachDB Architecture [33].

CockroachDB's architecture is manifested as a number of
layers, each of which interacts with the layers directly
above and below it as relatively opaque services. Layers
and their purpose in CockroachDB are shown in the table
below.

18 Priyam Shah et al.: Survey the Storage Systems Used in HPC and BDA Ecosystems

Table 1. Layers in CockroachDB [33].

Layer Order Purpose

SQL 1 Translate client SQL queries to KV operations.
Transactional 2 Allow atomic changes to multiple KV entries.
Distribution 3 Present replicated KV ranges as a single entity.

Replication 4
Consistently and synchronously replicate KV ranges across many nodes. This layer also enables consistent reads
using a consensus algorithm.

Storage 5 Read and write KV data on disk.

3.1.1. Data-Storage in CockroachDB

The storage layer of CockroachDB's architecture reads and
writes data to disk. Each CockroachDB node contains at least
one store, specified when the node starts, which is where the
cockroach process reads and writes its data on disk. This data
is stored as key-value pairs on a disk using the storage engine,
which is treated primarily as a black-box API. CockroachDB
uses the Pebble storage engine. Pebble is intended to be bi-
directionally compatible with the RocksDB on-disk format
but differs in that it is written in Go and implements a subset
of RocksDB's large feature set. It contains optimizations that
benefit CockroachDB. Internally, each store contains two
instances of the storage engine one for storing temporary
distributed SQL data and one for all other data on the node.
In addition, there is also a block cache shared amongst all of
the stores in a node. These stores in turn have a collection of
range replicas. More than one replica for a range will never
be placed on the same store or even the same node. [33]

3.1.2. Data Access in CockroachDB

To make all data in your cluster accessible from any node,
CockroachDB stores data in a monolithic sorted map of key-
value pairs. This key-space describes all of the data in your
cluster, as well as its location, and is divided into what we
call "ranges", contiguous chunks of the key-space so that
every key can always be found in a single range.

CockroachDB implements a sorted map to enable:
Simple lookups: To identify which nodes are responsible

for certain portions of the data, queries are able to quickly
locate where to find the data they want.

Efficient scans: By defining the order of data, it's easy to
find data within a particular range during a scan.

The monolithic sorted map is comprised of two
fundamental elements: System data, which include meta
ranges that describe the locations of data in your cluster
(among many other cluster-wide and local data elements),
and User data, which store your cluster's table data. [33]

3.1.3. Data-Consistency in CockroachDB

To provide consistency, CockroachDB implements full
support for ACID transaction semantics in the transaction
layer. However, it's important to realize that all statements are
handled as transactions, including single statements––this is
sometimes referred to as "auto-commit mode" because it
behaves as if every statement is followed by a COMMIT.
Because CockroachDB enables transactions that can span
your entire cluster (including cross-range and cross-table
transactions), it achieves correctness using a distributed,

atomic commit protocol called Parallel Commits.
Any changes made to the data in a range rely on a

consensus algorithm to ensure that the majority of the range's
replicas agree to commit the change. This is how
CockroachDB achieves the industry-leading isolation
guarantees that allow it to provide your application with
consistent reads and writes, regardless of which node you
communicate with.

CockroachDB relies heavily on multi-version concurrency
control (MVCC) to process concurrent requests and
guarantee consistency. Much of this work is done by using
hybrid logical clock (HLC) timestamps to differentiate
between versions of data, track commit timestamps, and
identify a value's garbage collection expiration. All of this
MVCC data is then stored in Pebble. CockroachDB
maintains a timestamp cache, which stores the timestamp of
the last time that the key was read. If a write operation occurs
at a lower timestamp than the largest value in the read
timestamp cache, it signifies there’s a potential anomaly and
the transaction must be restarted at a later timestamp. [33]

Parallel Commits in CockroachDB
The Parallel Commits feature introduces a new, optimized

atomic commit protocol that cuts the commit latency of a
transaction in half, from two rounds of consensus down to
one. Combined with Transaction pipelining, this brings the
latency incurred by common OLTP transactions to near the
theoretical minimum: the sum of all read latencies plus one
round of consensus latency.

Under the new atomic commit protocol, the transaction
coordinator can return to the client eagerly when it knows
that the writes in the transaction have succeeded. Once this
occurs, the transaction coordinator can set the transaction
record's state to COMMITTED and resolve the transaction's
write intentions asynchronously. The transaction coordinator
is able to do this while maintaining correctness guarantees
because it populates the transaction record with enough
information (via a new STAGING state, and an array of in-
flight writes) for other transactions to determine whether all
writes in the transaction are present, and thus prove whether
or not the transaction is committed. [33]

3.1.4. Fault Tolerance in CockroachDB

Ensuring consistency with nodes offline, though, is a
challenge many databases fail. To solve this problem,
CockroachDB uses a consensus algorithm to require that a
quorum of replicas agrees on any changes to a range before
those changes are committed. Because 3 is the smallest
number that can achieve quorum (i.e., 2 out of 3),

 Internet of Things and Cloud Computing 2022; 10(1): 12-28 19

CockroachDB's high availability (known as multi-active
availability) requires 3 nodes.

The number of failures that can be tolerated is equal to
(Replication factor - 1)/2. For example, with 3x replication,
one failure can be tolerated; with 5x replication, two failures,
and so on. You can control the replication factor at the cluster,
database, and table-level using replication zones.

When failures happen, though, CockroachDB
automatically realizes nodes have stopped responding and
works to redistribute your data to continue maximizing
survivability. This process also works the other way
around: when new nodes join your cluster, data
automatically rebalances onto it, ensuring your load is
evenly distributed. [33]

Raft Protocol in CockroachDB
Raft is a consensus protocol––an algorithm that makes

sure that your data is safely stored on multiple machines, and
that those machines agree on the current state even if some of
them are temporarily disconnected.

Raft organizes all nodes that contain a replica of a range
into a group--unsurprisingly called a Raft group. Each replica
in a Raft group is either a "leader" or a "follower". The leader,
which is elected by Raft and long-lived, coordinates all
writes to the Raft group. It heartbeats followers periodically
and keeps their logs replicated. In the absence of heartbeats,
followers become candidates after randomized election
timeouts and proceed to hold new leader elections.

3.1.5. Recovery in CockroachDB

Each replica can be "snapshotted", which copies all its data
as of a specific timestamp. This snapshot can be sent to other
nodes during a rebalance when a new node is added. After
loading the snapshot, the node gets up to date by replaying all
actions from the Raft group's log that have occurred since the
snapshot was taken.

3.2. Hadoop Distributed File System (HDFS)

The Hadoop Distributed File System (HDFS) is a
distributed file system designed to run on commodity
hardware. It has many similarities with existing distributed
file systems. HDFS is highly fault-tolerant and is designed to
be deployed on low-cost hardware. HDFS provides high
throughput access to application data and is suitable for
applications that have large data sets. HDFS relaxes a few
POSIX requirements to enable streaming access to file
system data. HDFS was originally built as infrastructure for
the Apache Nutch web search engine project. HDFS is now
an Apache Hadoop subproject. [34]

Figure 9 shows a HDFS master/slave architecture. An
HDFS cluster consists of a single NameNode, a master server
that manages the file system namespace and regulates access
to files by clients. In addition, there are several DataNodes,
usually, one per node in the cluster, which manage storage
attached to the nodes that they run on. HDFS exposes a file
system namespace and allows user data to be stored in files.
The NameNode executes file system namespace operations
like opening, closing, and renaming files and directories. It

also determines the mapping of blocks to DataNodes. The
DataNodes are responsible for serving read and write
requests from the file system’s clients. The DataNodes also
perform block creation, deletion, and replication upon
instruction from the NameNode.

Figure 9. HDFS Architecture.

3.2.1. Data Storage in HDFS

HDFS supports a traditional hierarchical file organization.
A user or an application can create directories and store files
inside these directories. The file system namespace hierarchy
is like most other existing file systems; one can create and
remove files, move a file from one directory to another, or
rename a file. Internally, a file is split into one or more blocks
and these blocks are stored in a set of DataNodes.

The NameNode maintains the file system namespace. Any
change to the file system namespace or its properties is
recorded by the NameNode. An application can specify the
number of replicas of a file that should be maintained by
HDFS. The number of copies of a file is called the replication
factor of that file. This information is stored by the
NameNode.

Data Blocks
HDFS is designed to support very large files. Applications

that are compatible with HDFS are those that deal with large
data sets. These applications write their data only once, but
they read it one or more times and require these reads to be
satisfied at streaming speeds. HDFS supports write-once-
read-many semantics on files. A typical block size used by
HDFS is 64 MB. Thus, an HDFS file is chopped up into 64
MB chunks, and if possible, each chunk will reside on a
different DataNode.

3.2.2. Data-Access in HDFS

All HDFS communication protocols are layered on top of
the TCP/IP protocol. A client establishes a connection to a
configurable TCP port on the NameNode machine. It talks to
the NameNode with the ClientProtocol. The DataNodes talk
to the NameNode using the DataNode Protocol. A Remote
Procedure Call (RPC) abstraction wraps both the Client
Protocol and the DataNode Protocol. By design, the
NameNode never initiates any RPCs. Instead, it only
responds to RPC requests issued by DataNodes or clients.

20 Priyam Shah et al.: Survey the Storage Systems Used in HPC and BDA Ecosystems

3.2.3. Data-Consistency in HDFS

The HDFS namespace is stored by the NameNode. The
NameNode uses a transaction log called the EditLog to
persistently record every change that occurs to file system
metadata. For example, creating a new file in HDFS causes
the NameNode to insert a record into the EditLog indicating
this. Similarly, changing the replication factor of a file
causes a new record to be inserted into the EditLog. The
NameNode uses a file in its local host OS file system to
store the EditLog. The entire file system namespace,
including the mapping of blocks to files and file system
properties, is stored in a file called the FsImage. The
FsImage is stored as a file in the NameNode’s local file
system too.

3.2.4. Fault Tolerance in HDFS

The primary objective of HDFS is to store data reliably
even in the presence of failures. The three common types of
failures are NameNode failures, DataNode failures, and
network partitions.

Data Disk Failure, Heartbeats and Re-Replication
Each DataNode sends a Heartbeat message to the

NameNode periodically. A network partition can cause a
subset of DataNodes to lose connectivity with the NameNode.
The NameNode detects this condition by the absence of a
Heartbeat message. The NameNode marks DataNodes
without recent Heartbeats as dead and does not forward any
new IO requests to them. Any data that was registered to a
dead DataNode is not available to HDFS anymore. DataNode
death may cause the replication factor of some blocks to fall
below their specified value. The NameNode constantly tracks
which blocks need to be replicated and initiates replication
whenever necessary. The necessity for re-replication may
arise due to many reasons: a DataNode may become
unavailable, a replica may become corrupted, a hard disk on
a DataNode may fail, or the replication factor of a file may
be increased.

Data Integrity
It is possible that a block of data fetched from a DataNode

arrives corrupted. This corruption can occur because of faults
in a storage device, network faults, or buggy software. The
HDFS client software implements checksum checking on the
contents of HDFS files. When a client creates an HDFS file,
it computes a checksum of each block of the file and stores
these checksums in a separate hidden file in the same HDFS
namespace. When a client retrieves file contents it verifies
that the data it received from each DataNode matches the
checksum stored in the associated checksum file. If not, then
the client can opt to retrieve that block from another
DataNode that has a replica of that block.

Metadata Disk Failure
The FsImage and the EditLog are central data structures of

HDFS. A corruption of these files can cause the HDFS
instance to be non-functional. For this reason, the NameNode
can be configured to support maintaining multiple copies of
the FsImage and EditLog. Any update to either the FsImage
or EditLog causes each of the FsImages and EditLogs to get

updated synchronously. This synchronous updating of
multiple copies of the FsImage and EditLog may degrade the
rate of namespace transactions per second that a NameNode
can support. However, this degradation is acceptable because
even though HDFS applications are very data-intensive in
nature, they are not metadata intensive. When a NameNode
restarts, it selects the latest consistent FsImage and EditLog
to use.

The NameNode machine is a single point of failure for an
HDFS cluster. If the NameNode machine fails, manual
intervention is necessary. Currently, automatic restart and
failover of the NameNode software to another machine is not
supported.

3.2.5. Recovery

Before a client can write an HDFS file, it must obtain a
lease, which is essentially a lock. This ensures the single-
writer semantics. The lease must be renewed within a
predefined period if the client wishes to keep writing. If a
lease is not explicitly renewed or the client holding it dies,
then it will expire. When this happens, HDFS will close the
file and release the lease on behalf of the client so that other
clients can write to the file. This process is called lease
recovery.

If the last block of the file being written is not propagated
to all DataNodes in the pipeline, then the amount of data
written to different nodes may be different when lease
recovery happens. Before lease recovery causes the file to be
closed, it’s necessary to ensure that all replicas of the last
block have the same length; this process is known as block
recovery. Block recovery is only triggered during the lease
recovery process, and lease recovery only triggers block
recovery on the last block of a file if that block is not in the
COMPLETE state.

During write pipeline operations, some DataNodes in the
pipeline may fail. When this happens, the underlying write
operations can’t just fail. Instead, HDFS will try to recover
from the error to allow the pipeline to keep going and the
client to continue to write to the file. The mechanism to
recover from the pipeline error is called pipeline recovery.

4. Comparative Results

The results for Table 2 and Figure 10 help in conforming
our selection of Lustre as one of the prominent file system
choices in HPC ecosystem. Many supercomputers are using
it and the benchmark scores are high compared to Ceph file
system. The stable production release date from Table 3
satisfy that Ceph is a recent file system and has newer
strategies to solve data consistency, fault-tolerance and
recovery problems.

The figure 10 for IO 500 Supercomputing 2019 edition
provides insights on the most widely used filesystems in
HPC. Lustre filesystem is used by 29% of the HPC system,
BeeGFS is the second most widely used filesystem and only
3% of systems use CephFS.

 Internet of Things and Cloud Computing 2022; 10(1): 12-28 21

Figure 10. File systems in IO 500 Supercomputing 2019 edition [37].

Table 2. Performance of different file systems on the IO-500 list (2021) [35].

System FS Nodes client total procs IOR in GiB/s MDTest in kIOP/s Score

Tianhe-2E Lustre 480 5280 209.43 982.78 453.68

DGX-2H SuperPOD Lustre 10 400 86.97 715.76 249.5

EC2-10xi3en.metal CephFS 10 320 26.29 124.3 57.17

TigerShark CephFS 15 120 5.74 38.72 14.91

Google Lustre 1000 5000 282.78 1,148.90 569.99

The Table 2 shows results for IO 500 supercomputing

2021 edition. IOR is a parallel IO benchmark that can be
used to test the performance of parallel storage systems using
various interfaces and access patterns. MDtest is an MPI-
based application for evaluating the metadata performance of
a file system and has been designed to test parallel file
systems. The IOR and MDTest values are the geometric
mean of all results. The IO500 score draws an arbitrary
equivalency between the difficulty of achieving one gigabyte
per second and one kilo-I/O operation per second of
performance. The official IO-500 score is computed by
sqrt(md * io) with the unit sqrt(GiB*IOP)/s. As we observe

for a Lustre file system running on Google system with 1000
Nodes and 5000 processes has a score of 569.99 we can say
that it needs 282.78 GiB/s of bandwidth to be equivalent to
1,148.90 KIOP/s. The better way to look at scores is to select
them individually based on workload needs since ior-easy
and mdtest benchmarks are tests of system capability they
demonstrate the peak capability of a system using idealized
patterns those real applications strive to generate. On the
other hand, the ior-hard benchmark tests an arbitrary pattern
that is neither representative of system capability nor any
specific user application.

Table 3. Qualitative overview of the HPC storage systems Lustre and Ceph.

 Lustre Ceph

Type Parallel File System Distributed File System
Availability Open Source, Commercial Edition Open Source, Commercial Edition

Founded By
Peter J. Braam in 2001 and had first production
release in 2003

Sage Weil in 2004 and had first stable release in 2012

Who is using?
Sun Microsystems, Silicon Graphics International
Corp, Dell, Intel, etc

DigitalOcean, Trendyol Group, Runtastic, SendGrid, etc

Written in C C++, Python

Data-Access

Lustre Network API and Lustre Network driver,
LNet layer is connectionless, asynchronous, and
does not verify that data has been transmitted while
the LND layer is connection-oriented and typically
does verify data transmission.

It enables Ceph Clients to directly contact Ceph OSD Daemons. Ceph
increases both performance and total system capacity simultaneously,
while removing a single point of failure. Ceph Clients can maintain a
session when they need to and with a particular Ceph OSD Daemon
instead of a centralized server.

Usage in
Supercomputers

Majority Supercomputers use Lustre filesystem Few Supercomputers use Ceph Filesystem

22 Priyam Shah et al.: Survey the Storage Systems Used in HPC and BDA Ecosystems

 Lustre Ceph

(Based on IO500 SC'21)
Website https://www.lustre.org/ https://ceph.io/en/
Storage-type Object Storage File Storage, Object Storage, Block Storage

User-access controls
Access control lists (ACLs): a list of permissions
associated with a system resource

Role Based Access Control (RBACs): an approach to restricting system
access to authorized users.

Scalability Horizontal Horizontal

Partitioning methods
Data Striping - stripe data across multiple OSTs in
a round-robin fashion

The Ceph storage system supports the notion of ‘Pools’, which are
logical partitions for storing objects

Failures
Client (compute node) failure Client failure;
MDS failure (and failover) MDS failure;
OST failure (and failover) OSD failure;

Consistency

1. It has few consistency issues like Dangling
reference, Orphan Objects and Repeated
reference. Following are the solutions provided
by framework,

2. FID-in-LMA: Lustre* object stores its FID in
the XATTR_NAME_LMA extended attribute
(EA) for related OI mapping consistency self-
verification.

3. linkEA: The MDT-object stores its position (in
namespace) information (the name and the
parent FID) as XATTR_NAME_LINK EA.

4. parent FID for OST-object: The OST-object
stores the FID of its parent MDT-object that
references the OST-object as
XATTR_NAME_FID EA.

5. To verify consistency it provides Lustre*
consistency verification tools - LFSCK that can
verify the objects in the whole/partial system

a. Data Scrubbing: Ceph OSD Daemons can compare their local
objects metadata with its replicas stored on other OSDs which is
called scrubbing.

b. Scrubbing happens on a per-placement group base. Scrubbing
(usually performed daily) catches mismatches in size and other
metadata.

c. Ceph OSD Daemons also perform deeper scrubbing by comparing
data in objects bit-for-bit with their checksums.

d. Deep scrubbing (usually performed weekly) finds bad sectors on a
drive that wasn’t apparent in a light scrub.

Fault Tolerance

There are two types of failover configurations
available: active/passive pair and active/active pair.
1. Active/passive pair - In this configuration, the

active node provides resources and serves data,
while the passive node is usually standing by
idle. If the active node fails, the passive node
takes over and becomes active.

2. Active/active pair - In this configuration, both
nodes are active, each providing a subset of
resources.

a. If an MDS daemon stops communicating with the monitor, the
monitor will wait mds_beacon_grace seconds (default 15 seconds)
before marking the daemon as laggy.

b. If the standby is available, the monitor will immediately replace the
laggy daemon. Each file system may specify the number of standby
daemons to be considered healthy.

c. This number includes daemons in standby-replay waiting for a rank
to fail. The pool of standby daemons not in replay count towards
any file system count.

Recovery

1. “Imperative Recovery” feature allows the MGS
to actively inform clients when a target restarts
after a failure, failover, or other interruption to
speed up recovery.

2. “Metadata Replay” provides information on
recovering from a corrupt file system.

3. “Commit on Share” provides information on
resolving orphaned objects, a common issue
after recovery

4. Snaphshots and Backups

a. Metadata damage and repair: If a file system has inconsistent or
missing metadata, it is considered damaged. You may find out about
damage from a health message, or in some unfortunate cases from
an assertion in a running MDS daemon. Metadata damage can result
either from data loss in the underlying RADOS layer (e.g. multiple
disk failures that lose all copies of a PG) or from software bugs.
CephFS includes some tools that may be able to recover a damaged
file system, but to use them safely requires a solid understanding of
CephFS internals.

b. Data pool damage (files affected by lost data PGS): If a PG is lost in
a data pool, then the file system will continue to operate normally,
but some parts of some files will simply be missing (reads will
return zeros). Files are split into many objects, so identifying which
files are affected by the loss of particular PGs requires a full scan
overall object IDs that may exist within the size of a file. This type
of scan may be useful for identifying which files require restoring
from a backup.

Table 3 presents a qualitative comparison between Lustre

and Ceph file systems. It covers various generic aspects like
programming language used, stable production version
release date, website, data-storage, data-consistency, etc. The
basic building block for the storage in both systems is object
storage. Being a parallel filesystem Lustre uses data-striping
to stripe data across multiple OSTs. Ceph is a distributed file
system and uses CRUSH algorithm to decide data storage.

Ceph uses a subset of Lustre fault tolerance mechanisms
which is active/passive strategy. Lustre offer various types of
recovery mechanism over Ceph. The placement strategy used
by CRUSH helps in maintaining data-consistency with data-
scrubbing mechanisms while in Lustre it requires more tools
and methods to achieve data-consistency.

Table 4 presents the comparison between Lustre and Ceph file
systems using broad feature classification. The features like.

 Internet of Things and Cloud Computing 2022; 10(1): 12-28 23

Performance: To characterize a file system’s internal
techniques that are used for achieving high performance.

Reliability: The internal techniques and approaches that
make possible to oppose against unfavourable factors (for
example, Sudden Power-Off) and to keep data in consistent
state.

Security: To characterize file system’s approaches and
techniques that to protect against data corruption or lost

because of any malicious actions.
Scalability: The ability of a system, network, or process, to

handle a growing amount of work in a capable manner or its
ability to be enlarged to accommodate that growth.

Architectural: To characterize a file system’s design and
describe the vision of principal architectural approaches that
to define a file system’s components and essence of internal
interactions.

Table 4. Feature classification for Ceph and Lustre filesystems [38].

 Ceph Lustre

ARCHITECTURAL FEATURES
(These features characterize a file system’s
design and describe the vision of principal
architectural approaches that to define a
file system’s components and essence of
internal interactions between of its)

(1) Systems at the petabyte scale are inherently dynamic;
(2) Decouple data and metadata operations;
(3) Adaptive distributed metadata cluster architecture;
(4) Clients;
(5) Near-POSIX file system interface;
(6) Cluster of OSDs (Object Storage Devices);
(7) Metadata servers cluster;
(8) Dynamic distributed metadata management;
(9) Reliable Autonomic Distributed Object Store (RADOS);
(10) Extent and B-tree based Object File System (EBOFS).

(1) Cluster;
(2) Management server (MGS);
(3) Object-based filesystem;
(4) Metadata servers (MDSs);
(5) Object storage servers (OSSs);
(6) Clients;
(7) Object Storage Target (OST);
(8) Standard POSIX I/O system calls;
(9) Metadata Target (MDT);
(10) RAID 0 pattern (data is “striped”
across a certain number of objects).

PERFORMANCE FEATURES
(These features characterize a file system’s
internal techniques that are used for
achieving high performance)

(1) Controlled Replication Under Scalable Hashing (CRUSH);
(2) Dynamic hierarchical partition;
(3) Optimization for the most common metadata access
scenarios;
(4) No file allocation metadata is necessary;
(5) In-memory cache;
(6) Lazily flushed journals strategy;
(7) Inodes embedded in directory;
(8) Partitioning the directory hierarchy across multiple nodes;
(9) Knowledge of metadata popularity;
(10) Hashing content of large or heavy load directories by file
name across the cluster;
(11) Specially optimized low-level disk scheduler;
(12) B-tree service of EBOFS.

(1) Modified version of the ext4 journaling
file system;
(2) Lustre supports mmap() file I/O;
(3) Lustre uses RAID-0 striping and
balances space usage across OSTs;
(4) MPI ADIO layer that optimizes
parallel I/O;
(5) Ability to stripe data across multiple
OSTs in a round-robin fashion.

SYNCHRONIZATION FEATURES
(Synchronization refers to one of two
distinct but related concepts:
synchronization of processes, and
synchronization of data. Synchronization
features provide file system’s internal
techniques and architectural primitives
being used to implement data
synchronization)

(1) Object locks;
(2) O_LAZY flag (allows applications to explicitly relax the
usual coherency requirements for a shared-write file);
(3) No metadata locks or leases are issued to clients;
(4) Capabilities (specifying which operations are permitted);
(5) Shared long-term storage and carefully constructed
namespace locks.

(1) In a cluster most operations are atomic;
(2) Distributed lock manager (DLM);
(3) Two types of request: lock related and
data related.

RELIABILITY FEATURES
(Reliability features are internal techniques
and approaches that make possible to
oppose against unfavourable factors (for
example, Sudden Power-Off) and to keep
data in consistent state)

(1) Commit metadata updates to disk;
(2) Lazily flushed journals of MDS;
(3) Quick rescan of MDS journal by any node in the case of
MDS failure;
(4) OSDs self-report;
(5) Active monitoring of OSDs peers in PG;
(6) OSD liveness (OSD reachable + assigning data by
CRUSH);
(7) Object version number + PG’s log of recent changes;
(8) Fast Recovery Mechanism (FaRM).

(1) Checksum of all data sent from the
client to the OSS;
(2) Distributed file system check (lfsck)

HIGH-AVAILABILITY FEATURES
(High-availability features provide the
ability of the user community to access the
system, whether to submit new work,
update
or alter existing work, or collect the results
of previous work)

(1) Cluster of OSDs;
(2) Uniform striping and distribution strategy;
(3) Placement Groups (PG) + Controlled Replication Under
Scalable Hashing (CRUSH);
(4) Failure is the norm;
(5) Primary-copy replication;
(6) OSD monitor

(1) Active/active failover using shared
storage partitions for OSS targets (OSTs);
(2) Active/passive failover using a shared
storage partition for the MDS target
(MDT);
(3) High availability (HA) manager;
(4) Multiple mount protection (MMP)
provides integrated protection from errors;
(5) Availability is accomplished by
replicating hardware and/or software;
(6) A pair of servers with a shared resource

24 Priyam Shah et al.: Survey the Storage Systems Used in HPC and BDA Ecosystems

 Ceph Lustre

NAMESPACE FEATURES
(These features represents special
approaches and techniques that to make
possible to represent data by means of
hierarchy of files or in any other way.)

(1) CRUSH;
(2) Dynamic Subtree Partitioning;
(3) MDS cluster;
(4) Object names simply combine the file inode number and
the stripe number;
(5) Directory’s content distribution strategy;
(6) Ranges of inode numbers;
(7) Auxiliary anchor table (rare inode with multiple hard
links);
(8) Single authoritative MDS;
(9) Popularity of metadata;
(10) Three groups of inode contents with different consistency
semantics (security, file, and immutable).

(1) Single, coherent, synchronized
namespace;
(2) POSIX-compliant filesystem;
(3) Extended attribute (EA) describes the
mapping between file object id and its
corresponding OSTs;
(4) Each filename points to an inode. The
inode contains all of the file attributes.

SECURITY FEATURES
(Security features characterize file system’s
approaches and techniques that to protect
against data corruption or lost because of any
malicious actions.)

(1) Capabilities (specifying which operations are permitted)

(1) TCP connections only from privileged
ports;
(2) Group membership handling is server-
based;
(3) ACLs

SCALABILITY FEATURES
(Scalability is the ability of a system,
network, or process, to handle a growing
amount of work in a capable manner or its
ability to be enlarged to accommodate that
growth.)

(1) Object-based storages;
(2) Object names are constructed using the inode number, and
distributed to OSDs using CRUSH;
(3) MDS response content;
(4) Future metadata operations are directed at the authority
(for updates) or a random replica (for reads) based on the
deepest known prefix of a given path

(1) A new OSS with OSTs can be added to
the cluster without interrupting any
operations

NETWORK FEATURES
(This class of features describes
architectural solutions that to make file
system services available by means of
using different networkoriented
technologies.)

-

(1) Remote Direct Memory Access
(RDMA) for Infiniband (OFED);
(2) Re-exported using NFS or CIFS (via
Samba);
(3) All client/server communications in
Lustre are coded as an RPC request and
response;
(4) Lustre Networking (LNET).

Synchronization: To provide file system’s internal
techniques and architectural primitives being used to
implement data synchronization.

High-availability: To provide the ability of the user
community to access the system, whether to submit new
work, update or alter existing work, or collect the results of
previous work.

Namespace: This feature represents special approaches and
techniques to make possible to represent data by means of
hierarchy of files or in any other way.

Network: To describe architectural solutions to make file
system services available by means of using different
network-oriented technologies.

Based on feature listing we can see that Ceph provides
more strategies for namespace, reliability, and scalability
management. Lustre provides better availability, network,
and performance features.

Table 5 maps key design goals and features of Lustre and
Ceph file systems. The case-studies of various companies
using it, helps for making a logical decision while picking a
storage system with similar design goal or feature aspects in
HPC ecosystem. Ceph is suitable for high-latency
applications, while Lustre is suitable for low-latency

applications.
Table 6 presents qualitative comparison of HDFS and

CockroachDB. The DB Engine scores clearly convey why
HDFS is one of the prominent choices in BDA ecosystem.
The production release for both the storage systems conform
that CockroachDB is a newer system and uses NewSQL
techniques. These techniques need more time to have stable
build as they are still in early phase. The basic storage unit of
both the systems are key-value for CockroachDB and blocks
for HDFS. CockroachDB support automated scaling which is
a big relief over manual scaling. With the use of Parallel
commits, CockroachDB achieves its ACID properties in
distributed environment, while HDFS simply uses one-copy-
update semantics. Recovery mechanism provided by HDFS
are more sophisticated.

Table 7 maps key design goals and features of HDFS and
CockroachDB. The variety of use-case mapping these systems
helps for making a logical decision while picking a storage
system with similar design goal or feature in a BDA ecosystem.
CockroachDB is well-suited for systems requiring ACID
compliance, strong consistency, and minimal downtime. HDFS
is well-suited for storing large-amount of data and variety of
data-formats, strong fault-tolerance and recovery needs.

 Internet of Things and Cloud Computing 2022; 10(1): 12-28 25

Table 5. Design Goals vs Key Features of Lustre and Ceph File Systems [31, 38].

Filesystem Design Goals Top 3 Features Case Studies

Ceph

(1) To be scalable
file system;
(2) To utilize a
highly adaptive
distributed
metadata cluster
architecture;
(3) To be a highly-
available file
system

1. Namespace features (These features represents special approaches and techniques to
represent data by means of hierarchy of files or in any other way)

a. CRUSH: (Controlled, Scalable, Decentralized Placement of Replicated Data)
Algorithm uses intelligent data replication to ensure resiliency, which is better suited to
hyper-scale storage.

b. Single authoritative MDS and MDS cluster;
c. Object names simply combine the file inode number and the stripe number;
d. Directory’s content distribution strategy;

2. Reliability features
a. Commit metadata updates to disk;
b. Quick rescan of MDS journal by any node in the case of MDS failure;
c. OSDs self-report;
d. Active monitoring of OSDs peers in PG;

3. Performance optimization features
a. Dynamic hierarchical partition: Partitioning the directory hierarchy across

multiple nodes;
b. Optimization for the most common metadata access scenarios: using In-memory

cache (a data storage layer that sits between applications and databases to deliver
responses with high speeds by storing data from earlier requests or copied directly
from databases);

c. Inodes embedded in directory; Inodes are a data structure in a Unix-style file
system that describes a file-system object such as a file or a directory;

d. Hashing content of large or heavy load directories by file name across the cluster;
e. - B-tree service of EBOFS. (an extent and B+tree based object file system, allows

arbitrarily sized objects and preserves intra-object locality of reference by allocating
data contiguously on disk)

1. US Signal scales its
Storage As A Service
(STaaS) offering to help
meet growing demand
2. Capturing flight data
at the edge, for quick
processing in
geographically dispersed
data centers
3. THG Ingenuity’s
mission: to build a state
of the art platform that
not only supports, but
accelerates their
ecommerce business

Lustre

(1) To be scalable
for use in large
computer
clusters;
(2) To support a
variety of high
performance, low
latency networks;
(3) To tune the file
I/O to specific
application
requirements;
(4) To optimize
parallel I/O.

1. High-availability features
a. Active/active failover using shared storage partitions for OSS targets (OSTs);
b. Active/passive failover using a shared storage partition for the MDS target

(MDT);
c. High availability (HA) manager;
d. Multiple mount protection (MMP) provides integrated protection from errors;
e. Availability is accomplished by replicating hardware and/or software;

2. Performance optimization features
a. Modified version of the ext4 journaling file system;
b. Lustre supports mmap() file I/O: multiple processes accessing data in a read only

fashion from the same file;
c. Lustre uses RAID-0 striping and balances space usage across OSTs;
d. MPI ADIO (Abstract-Device Interface for I/O) layer that optimizes parallel I/O;
e. Ability to stripe data across multiple OSTs in a round-robin fashion.

3. Network features
a. Remote Direct Memory Access (RDMA) for Infiniband (OFED);
b. Re-exported using NFS or CIFS (via Samba);
c. All client/server communications in Lustre are coded as an RPC request and

response;
d. - LNet and LND: LNet layer is connectionless, asynchronous, and does not verify

that data has been transmitted while the LND layer is connection-oriented and
typically does verify data transmission.

1. Maxar Uses Amazon
FSx for Lustre to Deliver
Forecasts Weather
2. Toyota Research
Institute (TRI) collects
and processes large
amounts of sensor data
from their autonomous
vehicles (AV) test drives
using Amazon FSx for
Lustre.
3. Netflix VFX team
uses Amazon FSx for
Lustre.

Table 6. Qualitative comparison of CockroachDB and HDFS.

 CockroachDB HDFS

Type NewSQL Storage Engine (Distributed FS) Distributed File System
Availability Open Source, Community Edition, Commercial Edition Open Source, Commercial Edition
Developed By Spencer Kimball at cockroach labs in 2014 Doug Cutting at Apache Software Foundation in 2006
Who is using? DoorDash, DevSisters, MUX, etc Uber, Airbnb, Netflix, etc
Written in Go Java
Primary database
model

Relational DBMS
Wide column store in HBase;
Relational DBMS in Hive;

DB-engines Ranking 58 / 353
25 / 353 HBase;
14 / 353 Hive;

Website www.cockroachlabs.com
hbase.apache.org
hive.apache.org

Storage-type Key-Value Pairs Blocks

26 Priyam Shah et al.: Survey the Storage Systems Used in HPC and BDA Ecosystems

 CockroachDB HDFS

User-access controls Role-based access control
Access Control Lists (ACL) for RBAC, integration with
Apache Ranger for RBAC & ABAC

Scalability Horizontal, automated scaling Horizontal

Consistency
full support for ACID transaction semantics using Parallel
Commits

one-copy-update-semantics -all clients see contents of file
identically as if only one copy of file existed.

Replication methods horizontal partitioning (by key range) Sharding

Partitioning methods Multi-source replication using RAFT
Multi-source replication
Source-replica replication

MapReduce Support no yes
Foreign keys support yes no
Failures Offline Nodes; NameNode failures, DataNode failures, and network partitions

Fault Tolerance

Replication using RAFT protocol - It is a consensus protocol–
–an algorithm that makes sure that your data is safely stored
on multiple machines, and that those machines agree on the
current state even if some of them are temporarily
disconnected.
Rebalancing Nodes;

Heartbeats and Re-Replication;
Data Integrity - To verify data corruption perfrom checksum
Copy of FSImage - Incase NameNode fails, load copy of
FSImage on new NameNode

Recovery Snapshots

lease recovery - used, If a node having lock/lease for a file dies;
block recovery - used, if the last block of the file being written
is not propagated to all DataNodes in the pipeline;
pipeline recovery - used, if performing write pipeline
operations, some DataNodes in the pipeline fail.;

Table 7. Design Goal vs Key Features of HDFS and CockroachDB. [38]

DB Engines Design Goals Key Features Applications

CockroachDB

to support for ACID
transactions;
to have horizontal
scalability;
to have strong
consistency;
to have survivability i.e.
to have minimal latency
disruption and no
manual intervention with
disk, machine, rack, and
even datacenter failures.

a. EFFORTLESS SCALE: Scale your applications, not operational
complexity. CockroachDB scales without manual operation, eliminates
overhead associated with manual sharding, and balances server
utilization to reduce costs.

b. BULLETPROOF RESILIENCE: Ensure your apps are always on and
available. CockroachDB survives system failures without interruption,
reduces the need for complex and costly backup configurations, and
eliminates the risk of losing data.

c. ENSURED CONSISTENCY: Guarantee transactional consistency in
distributed SQL. CockroachDB ensures all your data is always correct
and up-to-date, guarantees serializable isolation, and applies a cost-
based optimizer and query planner to distributed workloads.

d. GEO-LOCALITY: Give your data a location. CockroachDB is the only
database that assigns data to a location allowing you to reduce latencies,
move data close to your customers, and remain globally compliant.

System of record (financial
ledger, inventory
management, transaction
record),
identity access management
(IAM),
metadata layer,
general purpose DB

HBase

to store and process large
amounts of data;
to have random access
storage and retrieval data
platform;
to store variety of data
storage formats;
to use map and reduce;
to have auto failover and
reliability;

a. No single point of failure ensures very high availability with multiple
customers having achieved 100% availability on a 3+ year lookback
basis.

b. Operational simplicity for lowest total cost of ownership.
c. Best-in-class scalability and performance of NoSQL platforms. No need

for managing and redesigning shards as the cluster grows.
d. Additional modalities with add-on applications: Apache Phoenix

enables a SQL interface, OpenTSdb enables Time series operations,
JanusGraph enables a scale-out graph interface and GeoMesa provides a
geo-spatial interface.

Internet of Things (IOT),
fraud detection applications,
recommendation engines,
product catalogs and
playlists,
messaging applications,
customer 360 applicaitions,
web applications,
machine learning model
serving.

5. Conclusion

Storage systems are a combination of both hardware
storage devices and software file systems which serves the
purpose of all storage related issues. There are various
applications of HPC and BDA ecosystems like Modular
Ocean Model, mpiBLAST, ECOlogical model, social media,
Sensor Data, etc. Such applications can be broken down into
smaller subsets of problems. The design goals can be
evaluated for those problems and by aggregating and
comparing those design goals with features provided by
available file system a logical decision can be made on

selecting an existing filesystem or creating a newer
filesystem based on the needs of the application. In our paper
we have mapped design goals of file systems to various key
features and have supported them with use-cases being used
in industry.

Based on the qualitative comparison we can comment that
the object-based storage and distributed file systems are basic
similarities among the filesystems today. For HPC ecosystem
still Lustre is one of the most prominent choices as per IO500
SC’21 results [26, 27]. Hadoop (HDFS) is prominent choice
for many Big-Data applications as per DB Engines Ranking
[39].

Ceph still has some drawbacks. Among them is the

 Internet of Things and Cloud Computing 2022; 10(1): 12-28 27

limitation of only being able to deploy one CephFS per
cluster and the current test phase of reliability on real-world
use-cases. Some features and utilities are still in an
experimental phase as well. For instance, usage of snapshots
could cause client nodes or MDSs to terminate unexpectedly.
In addition, Ceph is designed with HDDs as its basis and
needs improvements in performance when disks are replaced
with SSDs, and the data access pattern is random [23]. HDFS
based storage solutions will provide low latency over cloud
deployed CockroachDB solution [29].

We have compared four storage systems where in two
storage system from each environment. There are hundreds
of such file system which need similar assessment. Finally, it
comes down to the storage system architect to understand the
design goals of the application for his problem and to map it
with the best available features and solution in the market
with proven performance.

6. Future Developments

On the hardware side, NVRAM storage will likely
transform how we build storage systems. On the one hand,
NVRAM can improve the capabilities to record large amounts
of data at the pace required to be useful for later analysis tasks.
On the other hand, NVRAM can dramatically simplify storage
systems, which currently add complexity to every effort for
relatively modest performance improvements. [2]

There is a wide variety of new and upcoming approaches
for file and storage systems. Their motive is optimization and
improvement is highly required due to the challenges
regarding managing the vast amount of data from I/O-
intensive applications. The HPC community aims to relax the
strict POSIX semantics without losing the support for legacy
applications. New approaches like DAOS: It will support
performing I/O in a scalable way, so that multiple processes
can perform asynchronous write operations without having to
worry about consistency problems [35]. Týr is a blob storage
system with support for transactions; it provides blob storage
functionality and high access parallelism, which is enough
for converging some applications in HPC and BDA like
BLAST, MOM, ECO-HAM and Ray Tracing applications
[1], SoMeta: Scalable Object-Centric Metadata Management
(SoMeta) is intended for future object-centric storage
systems, providing the corresponding metadata infrastructure.
A distributed hash table is used to organize metadata objects
that contain the file system metadata [36].

Storing bigdata in a decentralized storage is one of the
solutions for ever-growing data. In order to mitigate the
challenges like scalability and transaction speeds in
decentralized storage, techniques like swarming [38] and
sharding [37] are being used. Partitioning of databases along
logical lines is referred to as sharding. The decentralized
model ensures the storage of shards together. Moreover, a
unique partition key is used by a dedicated decentralized
application to access the shards. Besides this, swarming is
used to enable the collective storage of shards. Data is stored
and managed by creating a large group of nodes, which is

called a swarm. This group of nodes is similar to the network
of nodes created for blockchain. Possibly decentralized
storage can be a global solution later in the future for big data
storage systems. [39]

References

[1] P. Matri. Storage-Based HPC and Big Data Convergence
Using Transactional Blobs. PhD Thesis: Programa de
Doctorado de Inteligencia Artificial Escuela T ́ecnica Superior
de Ingenieros Inform ́aticos., 2018.

[2] S. Caíno-Lores, J. Carretero, B. Nicolae, O. Yildiz and T.
Peterka. Toward High-Performance Computing and Big Data
Analytics Convergence: The Case of Spark-DIY. In IEEE
Access, vol. 7, pp. 156929-156955, 2019.

[3] David Reinsel, John Gantz, and John Rydning. The
Digitization of the World From Edge to Core. White Paper of
IDC, 2018.

[4] The Scientific Case for HPC in Europe. Insight publishers
Bristol, 2012.

[5] ITRS: International technology roadmap for semiconductors -
2.0. Tech. rep., 2015.

[6] Top500: Top500 Supercomputer Sites.
http://www.top500.org/ (2017), accessed: 2018-03-01.

[7] Kuhn, M., Kunkel, J., and Ludwig T. Data Compression for
Climate Data. Supercomputing Frontiers and Innovations,
2016.

[8] McKee. Reflections on the memory wall. In Proceedings of
the First Conference on Computing Frontiers, 2004.

[9] Khan, S., Shakil, K. A., and Alam, M. Educational
intelligence: applying cloud-based big data analytics to the
Indian education sector. In 2016 2nd international conference
on contemporary computing and informatics (IC3I) (pp. 29-
34). IEEE, 2016.

[10] Assunção, M. D., Calheiros, R. N., Bianchi, S., Netto, M. A.,
& Buyya, R. Big Data computing and clouds: Trends and
future directions. Journal of Parallel and Distributed
Computing, 2015.

[11] Chen, C. P. and Zhang, C. Y. Data-intensive applications,
challenges, techniques and technologies: A survey on Big
Data. Information sciences, 2014.

[12] George, L. HBase: the definitive guide: random access to your
planet-size data. O'Reilly Media, Inc., 2014.

[13] Shvachko, K., Kuang, H., Radia, S., & Chansler, R. The
hadoop distributed file system. In MSST, 2010.

[14] Chodorow, K. MongoDB: the definitive guide: powerful and
scalable data storage. O'Reilly Media, Inc., 2013.

[15] Kornacker, M., Behm, A., Bittorf, V., Bobrovytsky, T., Ching,
C., Choi, A., and Joshi, I. Impala: A Modern, Open-Source
SQL Engine for Hadoop. In Cidr, 2015.

[16] Zaharia, M., Chowdhury, M., Franklin, M. J., Shenker, S., and
Stoica, I.. Spark: Cluster computing with working sets.
HotCloud, 2010.

28 Priyam Shah et al.: Survey the Storage Systems Used in HPC and BDA Ecosystems

[17] Ihaka, R., & Gentleman, R. R: a language for data analysis
and graphics. Journal of computational and graphical statistics,
1996.

[18] Oliphant, T. E. Python for scientific computing. Computing in
Science & Engineering, 2007.

[19] Gu, M., Li, X., & Cao, Y. Optical storage arrays: a perspective
for future big data storage. Light: Science & Applications,
2014.

[20] Strauch, C., Sites, U. L. S., & Kriha, W. NoSQL databases.
Lecture Notes, Stuttgart Media University, 2011.

[21] Lustre Software Release 2. x Operations Manual,
https://doc.lustre.org/lustre_manual.pdf, 2011.

[22] Oh, M., Eom, J., Yoon, J., Yun, J. Y., Kim, S., Yeom, H. Y.
Performance optimization for all flash scale-out storage. In:
2016 IEEE International Conference on Cluster Computing,
CLUSTER 2016.

[23] Weil, S. A., Brandt, S. A., Miller, E. L., Long, D. D. E.,
Maltzahn, C. Ceph: A scalable, high-performance distributed
file system. In: 7th Symposium on Operating Systems Design
and Implementation, 2018.

[24] Weil, S. A., Leung, A. W., Brandt, S. A., Maltzahn, C.
RADOS: a scalable, reliable storage service for petabyte-scale
storage clusters. In: Proceedings of the 2nd International
Petascale Data Storage Workshop, 2007.

[25] Ceph Documentation,
https://docs.ceph.com/en/pacific/architecture/, accessed:
11/25/2021.

[26] IO 500, https://io500.org/, SC21 List, last accessed:
11/25/2021.

[27] Comparison of distributed file systems, Wikipedia, Last
updated: 11/2/2021.

[28] OpenSFS, https://www.opensfs.org/wp-
content/uploads/2020/04/Lustre_IO500_v2.pdf, DOI:
04/22/2020.

[29] Dubeyko, Viacheslav. Comparative Analysis of Distributed
and Parallel File Systems' Internal Techniques, 2019.

[30] Ceph.io Case Studies, https://ceph.io/en/discover/case-studies/,
accessed: 11/25/2021.

[31] Amazon FSx for Lustre Case Studies,
https://aws.amazon.com/fsx/lustre/, accessed: 11/25/2021.

[32] CockroachDB Documentation,
https://www.cockroachlabs.com/docs/, accessed: 11/26/2021.

[33] Hadoop Documentation 1.2.1,
https://hadoop.apache.org/docs/r1.2.1/hdfs_design.html#Intro
duction, accessed: 11/26/2021.

[34] Lofstead, J. F., Jimenez, I., Maltzahn, C., Koziol, Q., Bent, J.,
Barton, E. DAOS and friends: a proposal for an exascale
storage system. In: Proceedings of the International
Conference for High Performance Computing, Networking,
Storage and Analysis, SC 2016.

[35] Tang, H., Byna, S., Dong, B., Liu, J., Koziol, Q. Someta:
Scalable object-centric metadata management for high
performance computing. In: 2017 IEEE International
Conference on Cluster Computing, CLUSTER 2017.

[36] Ferrer, E. C. The blockchain: a new framework for robotic
swarm systems. In Proceedings of the Future Technologies
Conference (pp. 1037-1058). Springer, 2018.

[37] Dang, H., Dinh, T. T. A., Loghin, D., Chang, E. C., Lin, Q.,
and Ooi, B. C. Towards Scaling Blockchain Systems via
Sharding. arXiv preprint, 2018.

[38] Khan, Samiya, Xiufeng Liu, Syed Arshad Ali, and Mansaf
Alam. Storage solutions for big data systems: A qualitative
study and comparison. arXiv preprint, 2019.

[39] DB-engines, https://db-engines.com/en/ranking, last accessed:
12/2/2021.

