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Abstract: The advancement in HPC and BDA ecosystem demands a better understanding of the storage systems to plan 
effective solutions. The amount of data being generated from the ever-growing devices over years have increased tremendously. 
To make applications access data more efficiently for computation, HPC and BDA ecosystems adopt different storage systems. 
Each storage system has its pros and cons. Therefore, it is worthwhile and interesting to explore the storage systems used in 
HPC and BDA respectively. Also, it’s inquisitive to understand how such storage systems can handle data consistency and fault 
tolerance at a massive scale. In this paper, we’re surveying four storage systems: Lustre, Ceph, HDFS, and CockroachDB. 
Lustre and HDFS are some of the most prominent file systems in HPC and BDA ecosystem. Ceph is an upcoming filesystem 
and is being used by supercomputers. CockroachDB is based on NewSQL systems a technique that is being used in the 
industry for BDA applications. The study helps us to understand the underlying architecture of these storage systems and the 
building blocks used to create them. The protocols and mechanisms used for data storage, data access, data consistency, fault 
tolerance, and recovery from failover are also overviewed. The comparative study will help system designers to understand the 
key features and architectural goals of these storage systems to select better storage system solutions. 
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1. Introduction 

Storage Systems are an integral part of any architecture. In 
general, they can be defined as a combination of storage 
devices (hardware) and file systems (software). The 
advancement in HPC and BDA ecosystem demands a better 
understanding of storage systems to plan effective storage 
solutions. The applications of HPC and BDA may have 
remained the same but the amount of data being generated 
from the ever-growing devices over years has increased 
tremendously. In order to make applications optimize data 
usage efficiently, HPC and BDA ecosystems adopt different 
storage systems. Each storage system has its pros and cons. 
Therefore, It is worthwhile and interesting to explore the 
storage systems used in HPC and BDA respectively. Also, 
It’s inquisitive to understand how such storage systems can 
handle data consistency and fault tolerance at a massive scale. 
In this paper we have surveyed four storage systems Lustre, 
Ceph, HDFS and CockroachDB. We reviewed Lustre and 
HDFS because they’re the most prominent file systems in 

HPC and BDA ecosystem. Ceph is an upcoming filesystem 
for HPC and is being used by supercomputers. CockroachDB 
is based on NewSQL RDBMS systems a recent technique 
which is being used in the industry for BDA. To understand 
the differences between the older and newer filesystem 
techniques we selected above four storage systems. 

Unfortunately, processor, memory, and network 
technologies are evolving at varying speeds. Clock 
frequencies do not increase significantly over the years, and 
even Moore's Law slows down as technology reaches its 
economic and physical limits [5]. However, due to the heavy 
use of parallel processing and distributed computing, 
computing power continues to grow dramatically [6]. The 
same doesn’t apply to storage technology. They have not 
benefited from comparable advances, so only a small portion 
of the calculation results can be permanently stored [7]. This 
discrepancy is sometimes referred to as a memory wall. This 
requires the user to determine what information is considered 
worthwhile to store [8]. In addition to storage challenges, 
politics and practicality demand limiting next-generation 
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exascale systems to 20 MW output [8]. According to, IDC 
the sum of all digital data, whether created, captured, or 
duplicated, will increase from 33 zettabytes (ZB) in 2018 to 
175 ZB by 2025 [3]. The growing demand for computation 
and data-intensive applications requires a better 
understanding of storage systems and their bottlenecks. 

1.1. Need for Storage Systems in HPC Ecosystem 

Supercomputers are a valuable tool for scientific and 
industrial users. They allow you to perform experiments and 
gain knowledge in areas that are too expensive, too 
dangerous, or impossible with other available technologies 
[4]. Large-scale modeling, simulation, and analysis are used 
to optimize existing technologies, glimpse the future, and 
understand phenomena without direct means of imaging or 
observation. Typical workloads for high-performance 
computing (HPC) are climate simulation, computational fluid 
forecasts, and computational fluid dynamics and finite 
element methods in physics, engineering, and astrophysics 
[4]. In biology and chemistry, protein folding and molecular 
dynamics are particularly computationally intensive. With the 
advent of precision medicine, HPC is becoming more 
important at the individual level as well. To solve these tasks, 
many scientific applications are frequently reading and 
writing large amounts of data to the attached storage systems. 
The above applications not only solve crucial problems but 
also contribute to human advancements over years. 

1.2. Need for Storage Systems in BDA Ecosystem 

The data is processed to generate information that can be 
used later for a variety of purposes. Data mining and 
knowledge discovery are two areas that we have been actively 
working on to extract useful information from raw data, make 
predictions, identify patterns, and create applications that 
facilitate decision-making [9]. However, with the advent of 
social media and smart devices, data is no longer a simple 
dataset that can be processed by traditional tools and 
technologies [10]. The growing popularity of digitization and 
the latest technologies such as smartphones and gadgets has 
contributed significantly to the flood of data. Moreover, this 
data is not just high in volume, but it also includes data of 
varied kinds that are generated on a regular basis. The biggest 
challenge in dealing with this "big data problem" is that current 
or traditional systems cannot store and process such data. This 
required a scalable system that could store data in a variety of 
formats and process them into meaningful analytical solutions 
[11]. Various technologies are available for this purpose, and 
organizations can use data stores such as HBase [12], HDFS 
[13], MongoDB [14], execution engines such as Impala [15] 
and Spark [16], and R. Programming languages such as [17] 
and Python [18]. Big data storage [19] is a general term used to 
describe a storage infrastructure designed to store, manage, 
and retrieve data. In such an infrastructure, data is stored for 
ease of usage, access, and processing. In addition, such 
infrastructure can be expanded according to the requirements 
of the application or service. 

1.3. File Systems 

Providing reliable, efficient, and easy-to-use file systems 
is one of the biggest challenges in today's HPC and BDA 
ecosystems, as various scientific and social applications 
generate and analyze vast amounts of data. The file system 
provides an interface to the underlying storage device and 
links identifiers such as filenames to the corresponding 
physical addresses in the storage hardware. This allows for 
more comfortable and simplified use of storage devices. 
Traditionally, directories and files have been used to 
implement the concept of hierarchy. In addition to the 
actual file content, metadata such as file size and access 
time is also managed. Several filesystems that offer a wide 
range of features have been proposed and established over 
the years. 

The need for high-throughput simultaneous read and write 
capabilities in HPC applications has led to the development 
of parallel and distributed file systems. The data can thus be 
distributed across a large number of storage devices and 
combine special properties to increase throughput and system 
capacity. However, due to the proliferation of data, 
processing vast amounts of information requires a more 
sophisticated and professional approach. At the same time, 
new and more powerful storage and network technologies are 
being developed that challenge each feature. Few well-
known file systems in HPC ecosystem include Lustre, 
Spectrum Scale, BeeGFS, OrangeFS, Ceph, and GlusterFS. 

The main task of the big data storage system is to support 
the storage of large numbers of files and objects, as well as 
the input and output operations of the stored data. 
Architectures typically used to store big data include clusters 
of network-attached storage and pools of directly attached 
storage [19]. At the heart of these infrastructures are compute 
server nodes that support the acquisition and processing of 
big data. Most of these storage infrastructures support big 
data storage solutions such as Hadoop [20], NoSQL [21], and 
NewSQL. 

2. HPC Storage Systems 

2.1. Lustre 

Lustre is a parallel file system that is used on 
supercomputers. It is licensed under the GNU General Public 
License (GPLv2) and can be extended and improved. 
Because of its high performance, Lustre is used on more than 
half of the 100 fastest supercomputers in the world. The 
figure 1 shows the file system’s architecture which 
distinguishes between clients and servers. Clients use RPC 
messages to communicate with the servers, which perform 
the actual I/O operations. While all clients are identical, the 
servers can have different roles: Object Storage Servers (OSS) 
manage the file system’s data in the form of objects; clients 
can access byte ranges within the objects. Metadata Servers 
(MDS) manage the file system’s metadata; after retrieving 
the metadata, clients can independently contact the 
appropriate OSSs. Each server is connected to possibly 
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multiple targets (OSTs/MDTs) that store the actual file data 
or metadata, respectively. The MGS stores configuration 
information for all the Lustre file systems in a cluster and 
provides this information to other Lustre components. Each 

Lustre target contacts the MGS to provide information, and 
Lustre clients contact the MGS to retrieve information. It is 
preferable that the MGS have its own storage space so that it 
can be managed independently [22]. 

 

Figure 1. Lustre Architecture [30]. 

The Lustre Networking layer (LNet) operates above the 
Lustre Network Driver (LND) layer in a manner similar to 
the way the network layer operates above the data link layer. 
LNet layer is connectionless, asynchronous, and does not 
verify that data has been transmitted while the LND layer is 
connection-oriented and typically does verify data 
transmission [22]. 

Lustre runs in kernel space, that is, most functionality has 
been implemented in the form of kernel modules, which has 
advantages and disadvantages. On the one hand, by using the 
kernel’s virtual file system (VFS) Lustre can provide a 
POSIX-compliant file system that is compatible with existing 
applications. On the other hand, each file system operation 
requires a system call, which can be expensive when dealing 
with high-performance network and storage devices [22]. 

2.1.1. Data Storage in Lustre 

 

Figure 2. Lustre client requesting file data to write. [30] 

Lustre File Identifiers (FIDs) are used internally for 
identifying files or objects, similar to inode numbers in local 
filesystems. An FID is a 128-bit identifier, which contains a 
unique 64-bit sequence number (SEQ), a 32-bit object ID 
(OID), and a 32-bit version number. The sequence number is 
unique across all Lustre targets in a file system (OSTs and 
MDTs). This allows multiple MDTs and OSTs to uniquely 
identify objects without depending on identifiers in the 
underlying filesystem (e.g. inode numbers) that are likely to 
be duplicated between targets. The LFSCK file system 
consistency checking tool provides functionality that helps in 
verifying invalidity or missing FID. Information about where 
file data is located on the OST (s) is stored as an extended 
attribute called layout EA in an MDT object identified by the 
FID. The above figure 2 explains a simple file write data 
request made by Lustre client. First the request goes to 
metadata server which returns and Extended Attribute (EA) 
of object addresses then respective OSTs are contacted for 
the operation all these occur over the LNet. One of the main 
factors leading to the high performance of Lustre file systems 
is the ability to stripe data across multiple OSTs in a round-
robin fashion. 

2.1.2. Data Consistency in Lustre 

Lustre file system has few consistency issues like dangling 
references, orphan objects, and repeated references. The 
consistency framework has the following solutions: 

FID-in-LMA (Lustre Metadata Attribute): Lustre object 
stores its FID in the XATTR_NAME_LMA extended 
attribute (EA) for related object index mapping consistency 
and self-verification. 
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linkEA: The MDT-object stores its position (in namespace) 
information (the name and the parent FID) as 
XATTR_NAME_LINK EA. 

Parent FID for OST-object: The OST-object stores the FID 
of its parent MDT-object that references the OST-object as 
XATTR_NAME_FID EA. 

To verify consistency, it provides Lustre consistency 
verification tools - LFSCK that can verify the objects in the 
whole/partial system. 

2.1.3. Fault-Tolerance in Lustre 

In a high-availability (HA) system, unscheduled downtime 
is minimized by using redundant hardware and software 
components and software components that automate recovery 
when a failure occurs. Availability is accomplished by 
replicating hardware and/or software so that when a primary 
server fails or is unavailable, a standby server can be 
switched into its place to run applications and associated 
resources. This process, called failover, is automatic in an HA 
system and, in most cases, completely application transparent. 

To establish a highly available Lustre file system, power 
management software or hardware and high availability (HA) 
software are used to provide the following failover capabilities: 

Resource fencing - Protects physical storage from 
simultaneous access by two nodes. 

Resource management - Starts and stops the Lustre 
resources as a part of failover, maintains the cluster state, and 
carries out other resource management tasks. 

Health monitoring - Verifies the availability of hardware 
and network resources and responds to health indications 
provided by the Lustre software. 

Types of Failover Configurations 

Active/passive pair – Figure 3 shows this configuration, 
the active node provides resources and serves data, while the 
passive node is usually standing by idle. If the active node 
fails, the passive node takes over and becomes active. 

Active/active pair – Figure 4 shows this configuration, 
both nodes are active, each providing a subset of resources. 

 

Figure 3. Lustre failover configuration for active/passive MDT [22]. 

 

Figure 4. Lustre failover configuration for active/active MDT [22]. 

2.1.4. Recovery in Lustre 

The recovery feature provided in the Lustre software is 
responsible for dealing with node or network failure and 
returning the cluster to a consistent, performant state. 
Because the Lustre software allows servers to perform 
asynchronous update operations to the on-disk file system 
(i.e., the server can reply without waiting for the update to 
synchronously commit to disk), the clients may have a state 
in memory that is newer than what the server can recover 
from disk after a crash. 

A handful of different types of failures can cause recovery 
to occur: Client (compute node) failure, MDS failure (and 
failover), OST failure (and failover) and Transient network 
partition. 

For Lustre, all Lustre file system failure and recovery 
operations are based on the concept of connection failure; all 
imports or exports associated with a given connection are 
considered to fail if any of them fail. Following are the 
recovery methods: 

a) “Imperative Recovery” feature allows the MGS to 
actively inform clients when a target restarts after a 
failure, failover, or other interruption to speed up 
recovery. 

b) “Metadata Replay” feature provides information on 
recovering from a corrupt file system. 

c) “Commit on Share” feature provides information on 
resolving orphaned objects, a common issue after 
recovery. 

2.2. Ceph 

Ceph is a free and open-source platform that offers file-, 
block- and object-based data storing on a single distributed 
cluster [24]. Figure 5 shows the Ceph architecture. The 
system implements distributed object storage on a base of the 
Reliable Autonomic Distributed Object Store (RADOS) 
system [25]. It is responsible for data migration, replication, 
failure detection, and failure recovery to the cluster. 
Integration of the near-POSIX-compliant CephFS file system 
allows many applications to utilize the benefits and 
capabilities of the scalable environment. Ceph makes use of 
intelligent Object Storage Devices (OSDs). These units 
provide file I/O (reads and writes) for all clients who interact 
with them. Data and metadata are decoupled because all the 
operations for metadata altering are performed by Metadata 
Servers (MDSs). Ceph dynamically distributes the metadata 
management and responsibility for the file system directory 
hierarchy among tens or even hundreds of those MDSs. 

A Ceph Storage Cluster consists of multiple types of 
daemons [28]: 

Ceph Monitor: A Ceph Monitor maintains a master copy of 
the cluster map. A cluster of Ceph monitors ensures high 
availability. Storage cluster clients retrieve a copy of the 
cluster map from the Ceph Monitor. 

Ceph OSD Daemon: A Ceph OSD Daemon checks its own 
state and the state of other OSDs and reports back to 
monitors. 

Ceph Manager: A Ceph Manager acts as an endpoint for 
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monitoring, orchestration, and plug-in modules. 
Ceph Metadata Server: A Ceph Metadata Server (MDS) 

manages file metadata when CephFS is used to provide file 
services. 

 

Figure 5. Ceph Architecture. 

2.2.1. CRUSH Algorithm (Controlled, Scalable, 

Decentralized Placement of Replicated Data) 

Ceph Clients and Ceph OSD Daemons both use the 
CRUSH algorithm to efficiently compute information about 
object location, instead of having to depend on a central 
lookup table. CRUSH provides a better data management 
mechanism compared to older approaches and enables 
massive scale by cleanly distributing the work to all the 
clients and OSD daemons in the cluster. CRUSH uses 
intelligent data replication to ensure resiliency, which is 
better suited to hyper-scale storage [28]. 

2.2.2. Data-Storage in Ceph 

The Ceph Storage Cluster receives data from Ceph 
Clients–whether it comes through a Ceph Block Device, 
Ceph Object Storage, the Ceph File System, or a custom 
implementation you create using librados– which is stored as 
RADOS objects. Each object is stored on an Object Storage 
Device. Ceph OSD Daemons handle read, write, and 
replication operations on storage drives. With the older File 
store back end, each RADOS object was stored as a separate 
file on a conventional filesystem (usually XFS) [28]. With 
the new and default BlueStore back end, objects are stored in 
a monolithic database-like fashion as shown in Figure 6. 

 

Figure 6. Ceph data storage high level [28]. 

Ceph OSD Daemons store data as objects in a flat 
namespace (e.g., no hierarchy of directories) as shown in 
Figure 7. An object has an identifier, binary data, and 
metadata consisting of a set of name/value pairs. The 
semantics are completely up to Ceph Clients. For example, 
CephFS uses metadata to store file attributes such as the file 
owner, created date, last modified date, and so forth [28]. 

 

Figure 7. Ceph namespace for data storage [28]. 

The Ceph storage system supports the notion of ‘Pools’, 
which are logical partitions for storing objects. Ceph Clients 
retrieve a Cluster Map from a Ceph Monitor and write 
objects to pools. The pool’s size or the number of replicas, 
the CRUSH rule, and the number of placement groups 
determine how Ceph will place the data. 

2.2.3. Data-Access in Ceph 

OSDs Service Clients Directly: Since any network device 
has a limit to the number of concurrent connections it can 
support, a centralized system has a low physical limit at high 
scales. By enabling Ceph Clients to contact Ceph OSD 
Daemons directly, Ceph increases both performance and total 
system capacity simultaneously, while removing a single 
point of failure. Ceph Clients can maintain a session when 
they need to and with a particular Ceph OSD Daemon instead 
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of a centralized server [28]. 

2.2.4. Data-Consistency in Ceph 

Data Scrubbing: As part of maintaining data consistency 
and cleanliness, Ceph OSD Daemons can scrub objects. That 
is, Ceph OSD Daemons can compare their local objects 
metadata with its replicas stored on other OSDs. Scrubbing 
happens on a per-Placement Group base. Scrubbing (usually 
performed daily) catches mismatches in size and other 
metadata. Ceph OSD Daemons also perform deeper 
scrubbing by comparing data in objects bit-for-bit with their 
checksums. Deep scrubbing (usually performed weekly) 
finds bad sectors on a drive that wasn’t apparent in a light 
scrub [28]. 

2.2.5. Fault Tolerance in Ceph 

If an MDS daemon stops communicating with the monitor, 
the monitor will wait mds_beacon_grace seconds (default 15 
seconds) before marking the daemon as laggy. If the standby 
is available, the monitor will immediately replace the laggy 
daemon. Each file system may specify the number of standby 
daemons to be considered healthy. This number includes 
daemons in standby replay waiting for a rank to fail. The 
pool of standby daemons not in replay count towards any file 
system count [28]. 

2.2.6. Recovery in Ceph 

a) Metadata damage and repair: If a file system has 
inconsistent or missing metadata, it is considered 
damaged. You may find out about damage from a health 
message, or in some unfortunate cases from an assertion 
in a running MDS daemon. Metadata damage can result 
either from data loss in the underlying RADOS layer 
(e.g. multiple disk failures that lose all copies of a PG) 
or from software bugs. CephFS includes some tools that 
may be able to recover a damaged file system, but to 
use them safely requires a solid understanding of 
CephFS internals [28]. 

b) Data pool damage (files affected by lost data PGS): If a 
PG is lost in a data pool, then the file system will 
continue to operate normally, but some parts of some 
files will simply be missing (reads will return zeros). 
Losing a data PG may affect many files. Files are split 
into many objects, so identifying which files are 
affected by the loss of particular PGs requires a full 
scan of overall object IDs that may exist within the size 
of a file. This type of scan may be useful for identifying 
which files require restoring from a backup [28]. 

3. BDA Storage Systema 

3.1. CockroachDB 

CockroachDB was designed to create the source-available 
database for both scalability and consistency [32]. 
CockroachDB was designed to meet the following goals: 
Offer industry-leading consistency, even on massively scaled 
deployments. This means enabling distributed transactions, 

as well as removing the pain of eventual consistency issues 
and stale reads. Create an always-on database that accepts 
reads and writes on all nodes without generating conflicts. 
Allow flexible deployment in any environment, without tying 
you to any platform or vendor. Support familiar tools for 
working with relational data (i.e., SQL). [33]. 

Figure 8 shows the CockroachDB Architecture, Once the 
CockroachDB cluster is initialized, developers interact with 
CockroachDB through a PostgreSQL-compatible SQL API. 
Since there is symmetrical behavior of all nodes in a cluster, 
you can send SQL requests to any node; this makes 
CockroachDB easy to integrate with load balancers. After 
receiving SQL remote procedure calls (RPCs), nodes convert 
them into key-value (KV) operations that work with the 
distributed, transactional key-value stores. [33] 

As the RPCs start filling your cluster with data, 
CockroachDB starts algorithmically distributing your data 
among the nodes of the cluster, breaking the data up into 512 
MiB chunks (ranges). Each range is replicated to at least 3 
nodes by default to ensure survivability. This ensures that if 
any nodes go down, you still have copies of the data which 
can be used for continuing to serve reads and writes and 
consistently replicate the data to other nodes. If a node 
receives a read or write request it cannot directly serve, it 
finds the node that can handle the request, and communicates 
with that node. This means you do not need to know where in 
the cluster a specific portion of your data is stored; 
CockroachDB tracks it for you and enables symmetric 
read/write behavior from each node. [33] 

 

Figure 8. CockroachDB Architecture [33]. 

CockroachDB's architecture is manifested as a number of 
layers, each of which interacts with the layers directly 
above and below it as relatively opaque services. Layers 
and their purpose in CockroachDB are shown in the table 
below. 
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Table 1. Layers in CockroachDB [33]. 

Layer Order Purpose 

SQL 1 Translate client SQL queries to KV operations. 
Transactional 2 Allow atomic changes to multiple KV entries. 
Distribution 3 Present replicated KV ranges as a single entity. 

Replication 4 
Consistently and synchronously replicate KV ranges across many nodes. This layer also enables consistent reads 
using a consensus algorithm. 

Storage 5 Read and write KV data on disk. 

 

3.1.1. Data-Storage in CockroachDB 

The storage layer of CockroachDB's architecture reads and 
writes data to disk. Each CockroachDB node contains at least 
one store, specified when the node starts, which is where the 
cockroach process reads and writes its data on disk. This data 
is stored as key-value pairs on a disk using the storage engine, 
which is treated primarily as a black-box API. CockroachDB 
uses the Pebble storage engine. Pebble is intended to be bi-
directionally compatible with the RocksDB on-disk format 
but differs in that it is written in Go and implements a subset 
of RocksDB's large feature set. It contains optimizations that 
benefit CockroachDB. Internally, each store contains two 
instances of the storage engine one for storing temporary 
distributed SQL data and one for all other data on the node. 
In addition, there is also a block cache shared amongst all of 
the stores in a node. These stores in turn have a collection of 
range replicas. More than one replica for a range will never 
be placed on the same store or even the same node. [33] 

3.1.2. Data Access in CockroachDB 

To make all data in your cluster accessible from any node, 
CockroachDB stores data in a monolithic sorted map of key-
value pairs. This key-space describes all of the data in your 
cluster, as well as its location, and is divided into what we 
call "ranges", contiguous chunks of the key-space so that 
every key can always be found in a single range. 

CockroachDB implements a sorted map to enable: 
Simple lookups: To identify which nodes are responsible 

for certain portions of the data, queries are able to quickly 
locate where to find the data they want. 

Efficient scans: By defining the order of data, it's easy to 
find data within a particular range during a scan. 

The monolithic sorted map is comprised of two 
fundamental elements: System data, which include meta 
ranges that describe the locations of data in your cluster 
(among many other cluster-wide and local data elements), 
and User data, which store your cluster's table data. [33] 

3.1.3. Data-Consistency in CockroachDB 

To provide consistency, CockroachDB implements full 
support for ACID transaction semantics in the transaction 
layer. However, it's important to realize that all statements are 
handled as transactions, including single statements––this is 
sometimes referred to as "auto-commit mode" because it 
behaves as if every statement is followed by a COMMIT. 
Because CockroachDB enables transactions that can span 
your entire cluster (including cross-range and cross-table 
transactions), it achieves correctness using a distributed, 

atomic commit protocol called Parallel Commits. 
Any changes made to the data in a range rely on a 

consensus algorithm to ensure that the majority of the range's 
replicas agree to commit the change. This is how 
CockroachDB achieves the industry-leading isolation 
guarantees that allow it to provide your application with 
consistent reads and writes, regardless of which node you 
communicate with. 

CockroachDB relies heavily on multi-version concurrency 
control (MVCC) to process concurrent requests and 
guarantee consistency. Much of this work is done by using 
hybrid logical clock (HLC) timestamps to differentiate 
between versions of data, track commit timestamps, and 
identify a value's garbage collection expiration. All of this 
MVCC data is then stored in Pebble. CockroachDB 
maintains a timestamp cache, which stores the timestamp of 
the last time that the key was read. If a write operation occurs 
at a lower timestamp than the largest value in the read 
timestamp cache, it signifies there’s a potential anomaly and 
the transaction must be restarted at a later timestamp. [33] 

Parallel Commits in CockroachDB 
The Parallel Commits feature introduces a new, optimized 

atomic commit protocol that cuts the commit latency of a 
transaction in half, from two rounds of consensus down to 
one. Combined with Transaction pipelining, this brings the 
latency incurred by common OLTP transactions to near the 
theoretical minimum: the sum of all read latencies plus one 
round of consensus latency. 

Under the new atomic commit protocol, the transaction 
coordinator can return to the client eagerly when it knows 
that the writes in the transaction have succeeded. Once this 
occurs, the transaction coordinator can set the transaction 
record's state to COMMITTED and resolve the transaction's 
write intentions asynchronously. The transaction coordinator 
is able to do this while maintaining correctness guarantees 
because it populates the transaction record with enough 
information (via a new STAGING state, and an array of in-
flight writes) for other transactions to determine whether all 
writes in the transaction are present, and thus prove whether 
or not the transaction is committed. [33] 

3.1.4. Fault Tolerance in CockroachDB 

Ensuring consistency with nodes offline, though, is a 
challenge many databases fail. To solve this problem, 
CockroachDB uses a consensus algorithm to require that a 
quorum of replicas agrees on any changes to a range before 
those changes are committed. Because 3 is the smallest 
number that can achieve quorum (i.e., 2 out of 3), 
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CockroachDB's high availability (known as multi-active 
availability) requires 3 nodes. 

The number of failures that can be tolerated is equal to 
(Replication factor - 1)/2. For example, with 3x replication, 
one failure can be tolerated; with 5x replication, two failures, 
and so on. You can control the replication factor at the cluster, 
database, and table-level using replication zones. 

When failures happen, though, CockroachDB 
automatically realizes nodes have stopped responding and 
works to redistribute your data to continue maximizing 
survivability. This process also works the other way 
around: when new nodes join your cluster, data 
automatically rebalances onto it, ensuring your load is 
evenly distributed. [33] 

Raft Protocol in CockroachDB 
Raft is a consensus protocol––an algorithm that makes 

sure that your data is safely stored on multiple machines, and 
that those machines agree on the current state even if some of 
them are temporarily disconnected. 

Raft organizes all nodes that contain a replica of a range 
into a group--unsurprisingly called a Raft group. Each replica 
in a Raft group is either a "leader" or a "follower". The leader, 
which is elected by Raft and long-lived, coordinates all 
writes to the Raft group. It heartbeats followers periodically 
and keeps their logs replicated. In the absence of heartbeats, 
followers become candidates after randomized election 
timeouts and proceed to hold new leader elections. 

3.1.5. Recovery in CockroachDB 

Each replica can be "snapshotted", which copies all its data 
as of a specific timestamp. This snapshot can be sent to other 
nodes during a rebalance when a new node is added. After 
loading the snapshot, the node gets up to date by replaying all 
actions from the Raft group's log that have occurred since the 
snapshot was taken. 

3.2. Hadoop Distributed File System (HDFS) 

The Hadoop Distributed File System (HDFS) is a 
distributed file system designed to run on commodity 
hardware. It has many similarities with existing distributed 
file systems. HDFS is highly fault-tolerant and is designed to 
be deployed on low-cost hardware. HDFS provides high 
throughput access to application data and is suitable for 
applications that have large data sets. HDFS relaxes a few 
POSIX requirements to enable streaming access to file 
system data. HDFS was originally built as infrastructure for 
the Apache Nutch web search engine project. HDFS is now 
an Apache Hadoop subproject. [34] 

Figure 9 shows a HDFS master/slave architecture. An 
HDFS cluster consists of a single NameNode, a master server 
that manages the file system namespace and regulates access 
to files by clients. In addition, there are several DataNodes, 
usually, one per node in the cluster, which manage storage 
attached to the nodes that they run on. HDFS exposes a file 
system namespace and allows user data to be stored in files. 
The NameNode executes file system namespace operations 
like opening, closing, and renaming files and directories. It 

also determines the mapping of blocks to DataNodes. The 
DataNodes are responsible for serving read and write 
requests from the file system’s clients. The DataNodes also 
perform block creation, deletion, and replication upon 
instruction from the NameNode. 

 

Figure 9. HDFS Architecture. 

3.2.1. Data Storage in HDFS 

HDFS supports a traditional hierarchical file organization. 
A user or an application can create directories and store files 
inside these directories. The file system namespace hierarchy 
is like most other existing file systems; one can create and 
remove files, move a file from one directory to another, or 
rename a file. Internally, a file is split into one or more blocks 
and these blocks are stored in a set of DataNodes. 

The NameNode maintains the file system namespace. Any 
change to the file system namespace or its properties is 
recorded by the NameNode. An application can specify the 
number of replicas of a file that should be maintained by 
HDFS. The number of copies of a file is called the replication 
factor of that file. This information is stored by the 
NameNode. 

Data Blocks 
HDFS is designed to support very large files. Applications 

that are compatible with HDFS are those that deal with large 
data sets. These applications write their data only once, but 
they read it one or more times and require these reads to be 
satisfied at streaming speeds. HDFS supports write-once-
read-many semantics on files. A typical block size used by 
HDFS is 64 MB. Thus, an HDFS file is chopped up into 64 
MB chunks, and if possible, each chunk will reside on a 
different DataNode. 

3.2.2. Data-Access in HDFS 

All HDFS communication protocols are layered on top of 
the TCP/IP protocol. A client establishes a connection to a 
configurable TCP port on the NameNode machine. It talks to 
the NameNode with the ClientProtocol. The DataNodes talk 
to the NameNode using the DataNode Protocol. A Remote 
Procedure Call (RPC) abstraction wraps both the Client 
Protocol and the DataNode Protocol. By design, the 
NameNode never initiates any RPCs. Instead, it only 
responds to RPC requests issued by DataNodes or clients. 
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3.2.3. Data-Consistency in HDFS 

The HDFS namespace is stored by the NameNode. The 
NameNode uses a transaction log called the EditLog to 
persistently record every change that occurs to file system 
metadata. For example, creating a new file in HDFS causes 
the NameNode to insert a record into the EditLog indicating 
this. Similarly, changing the replication factor of a file 
causes a new record to be inserted into the EditLog. The 
NameNode uses a file in its local host OS file system to 
store the EditLog. The entire file system namespace, 
including the mapping of blocks to files and file system 
properties, is stored in a file called the FsImage. The 
FsImage is stored as a file in the NameNode’s local file 
system too. 

3.2.4. Fault Tolerance in HDFS 

The primary objective of HDFS is to store data reliably 
even in the presence of failures. The three common types of 
failures are NameNode failures, DataNode failures, and 
network partitions. 

Data Disk Failure, Heartbeats and Re-Replication 
Each DataNode sends a Heartbeat message to the 

NameNode periodically. A network partition can cause a 
subset of DataNodes to lose connectivity with the NameNode. 
The NameNode detects this condition by the absence of a 
Heartbeat message. The NameNode marks DataNodes 
without recent Heartbeats as dead and does not forward any 
new IO requests to them. Any data that was registered to a 
dead DataNode is not available to HDFS anymore. DataNode 
death may cause the replication factor of some blocks to fall 
below their specified value. The NameNode constantly tracks 
which blocks need to be replicated and initiates replication 
whenever necessary. The necessity for re-replication may 
arise due to many reasons: a DataNode may become 
unavailable, a replica may become corrupted, a hard disk on 
a DataNode may fail, or the replication factor of a file may 
be increased. 

Data Integrity 
It is possible that a block of data fetched from a DataNode 

arrives corrupted. This corruption can occur because of faults 
in a storage device, network faults, or buggy software. The 
HDFS client software implements checksum checking on the 
contents of HDFS files. When a client creates an HDFS file, 
it computes a checksum of each block of the file and stores 
these checksums in a separate hidden file in the same HDFS 
namespace. When a client retrieves file contents it verifies 
that the data it received from each DataNode matches the 
checksum stored in the associated checksum file. If not, then 
the client can opt to retrieve that block from another 
DataNode that has a replica of that block. 

Metadata Disk Failure 
The FsImage and the EditLog are central data structures of 

HDFS. A corruption of these files can cause the HDFS 
instance to be non-functional. For this reason, the NameNode 
can be configured to support maintaining multiple copies of 
the FsImage and EditLog. Any update to either the FsImage 
or EditLog causes each of the FsImages and EditLogs to get 

updated synchronously. This synchronous updating of 
multiple copies of the FsImage and EditLog may degrade the 
rate of namespace transactions per second that a NameNode 
can support. However, this degradation is acceptable because 
even though HDFS applications are very data-intensive in 
nature, they are not metadata intensive. When a NameNode 
restarts, it selects the latest consistent FsImage and EditLog 
to use. 

The NameNode machine is a single point of failure for an 
HDFS cluster. If the NameNode machine fails, manual 
intervention is necessary. Currently, automatic restart and 
failover of the NameNode software to another machine is not 
supported. 

3.2.5. Recovery 

Before a client can write an HDFS file, it must obtain a 
lease, which is essentially a lock. This ensures the single-
writer semantics. The lease must be renewed within a 
predefined period if the client wishes to keep writing. If a 
lease is not explicitly renewed or the client holding it dies, 
then it will expire. When this happens, HDFS will close the 
file and release the lease on behalf of the client so that other 
clients can write to the file. This process is called lease 
recovery. 

If the last block of the file being written is not propagated 
to all DataNodes in the pipeline, then the amount of data 
written to different nodes may be different when lease 
recovery happens. Before lease recovery causes the file to be 
closed, it’s necessary to ensure that all replicas of the last 
block have the same length; this process is known as block 
recovery. Block recovery is only triggered during the lease 
recovery process, and lease recovery only triggers block 
recovery on the last block of a file if that block is not in the 
COMPLETE state. 

During write pipeline operations, some DataNodes in the 
pipeline may fail. When this happens, the underlying write 
operations can’t just fail. Instead, HDFS will try to recover 
from the error to allow the pipeline to keep going and the 
client to continue to write to the file. The mechanism to 
recover from the pipeline error is called pipeline recovery. 

4. Comparative Results 

The results for Table 2 and Figure 10 help in conforming 
our selection of Lustre as one of the prominent file system 
choices in HPC ecosystem. Many supercomputers are using 
it and the benchmark scores are high compared to Ceph file 
system. The stable production release date from Table 3 
satisfy that Ceph is a recent file system and has newer 
strategies to solve data consistency, fault-tolerance and 
recovery problems. 

The figure 10 for IO 500 Supercomputing 2019 edition 
provides insights on the most widely used filesystems in 
HPC. Lustre filesystem is used by 29% of the HPC system, 
BeeGFS is the second most widely used filesystem and only 
3% of systems use CephFS. 
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Figure 10. File systems in IO 500 Supercomputing 2019 edition [37]. 

Table 2. Performance of different file systems on the IO-500 list (2021) [35]. 

System FS Nodes client total procs IOR in GiB/s MDTest in kIOP/s Score 

Tianhe-2E Lustre 480 5280 209.43 982.78 453.68 

DGX-2H SuperPOD Lustre 10 400 86.97 715.76 249.5 

EC2-10xi3en.metal CephFS 10 320 26.29 124.3 57.17 

TigerShark CephFS 15 120 5.74 38.72 14.91 

Google Lustre 1000 5000 282.78 1,148.90 569.99 

 
The Table 2 shows results for IO 500 supercomputing 

2021 edition. IOR is a parallel IO benchmark that can be 
used to test the performance of parallel storage systems using 
various interfaces and access patterns. MDtest is an MPI-
based application for evaluating the metadata performance of 
a file system and has been designed to test parallel file 
systems. The IOR and MDTest values are the geometric 
mean of all results. The IO500 score draws an arbitrary 
equivalency between the difficulty of achieving one gigabyte 
per second and one kilo-I/O operation per second of 
performance. The official IO-500 score is computed by 
sqrt(md * io) with the unit sqrt(GiB*IOP)/s. As we observe 

for a Lustre file system running on Google system with 1000 
Nodes and 5000 processes has a score of 569.99 we can say 
that it needs 282.78 GiB/s of bandwidth to be equivalent to 
1,148.90 KIOP/s. The better way to look at scores is to select 
them individually based on workload needs since ior-easy 
and mdtest benchmarks are tests of system capability they 
demonstrate the peak capability of a system using idealized 
patterns those real applications strive to generate. On the 
other hand, the ior-hard benchmark tests an arbitrary pattern 
that is neither representative of system capability nor any 
specific user application. 

Table 3. Qualitative overview of the HPC storage systems Lustre and Ceph. 

 Lustre Ceph 

Type Parallel File System Distributed File System 
Availability Open Source, Commercial Edition Open Source, Commercial Edition 

Founded By 
Peter J. Braam in 2001 and had first production 
release in 2003 

Sage Weil in 2004 and had first stable release in 2012 

Who is using? 
Sun Microsystems, Silicon Graphics International 
Corp, Dell, Intel, etc 

DigitalOcean, Trendyol Group, Runtastic, SendGrid, etc 

Written in C C++, Python 

Data-Access 

Lustre Network API and Lustre Network driver, 
LNet layer is connectionless, asynchronous, and 
does not verify that data has been transmitted while 
the LND layer is connection-oriented and typically 
does verify data transmission. 

It enables Ceph Clients to directly contact Ceph OSD Daemons. Ceph 
increases both performance and total system capacity simultaneously, 
while removing a single point of failure. Ceph Clients can maintain a 
session when they need to and with a particular Ceph OSD Daemon 
instead of a centralized server. 

Usage in 
Supercomputers 

Majority Supercomputers use Lustre filesystem Few Supercomputers use Ceph Filesystem 
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 Lustre Ceph 

(Based on IO500 SC'21) 
Website https://www.lustre.org/ https://ceph.io/en/ 
Storage-type Object Storage File Storage, Object Storage, Block Storage 

User-access controls 
Access control lists (ACLs): a list of permissions 
associated with a system resource 

Role Based Access Control (RBACs): an approach to restricting system 
access to authorized users. 

Scalability Horizontal Horizontal 

Partitioning methods 
Data Striping - stripe data across multiple OSTs in 
a round-robin fashion 

The Ceph storage system supports the notion of ‘Pools’, which are 
logical partitions for storing objects 

Failures 
Client (compute node) failure Client failure; 
MDS failure (and failover) MDS failure; 
OST failure (and failover) OSD failure; 

Consistency 

1. It has few consistency issues like Dangling 
reference, Orphan Objects and Repeated 
reference. Following are the solutions provided 
by framework, 

2. FID-in-LMA: Lustre* object stores its FID in 
the XATTR_NAME_LMA extended attribute 
(EA) for related OI mapping consistency self-
verification. 

3. linkEA: The MDT-object stores its position (in 
namespace) information (the name and the 
parent FID) as XATTR_NAME_LINK EA. 

4. parent FID for OST-object: The OST-object 
stores the FID of its parent MDT-object that 
references the OST-object as 
XATTR_NAME_FID EA. 

5. To verify consistency it provides Lustre* 
consistency verification tools - LFSCK that can 
verify the objects in the whole/partial system 

a. Data Scrubbing: Ceph OSD Daemons can compare their local 
objects metadata with its replicas stored on other OSDs which is 
called scrubbing. 

b. Scrubbing happens on a per-placement group base. Scrubbing 
(usually performed daily) catches mismatches in size and other 
metadata. 

c. Ceph OSD Daemons also perform deeper scrubbing by comparing 
data in objects bit-for-bit with their checksums. 

d. Deep scrubbing (usually performed weekly) finds bad sectors on a 
drive that wasn’t apparent in a light scrub. 

Fault Tolerance 

There are two types of failover configurations 
available: active/passive pair and active/active pair. 
1. Active/passive pair - In this configuration, the 

active node provides resources and serves data, 
while the passive node is usually standing by 
idle. If the active node fails, the passive node 
takes over and becomes active. 

2. Active/active pair - In this configuration, both 
nodes are active, each providing a subset of 
resources. 

a. If an MDS daemon stops communicating with the monitor, the 
monitor will wait mds_beacon_grace seconds (default 15 seconds) 
before marking the daemon as laggy. 

b. If the standby is available, the monitor will immediately replace the 
laggy daemon. Each file system may specify the number of standby 
daemons to be considered healthy. 

c. This number includes daemons in standby-replay waiting for a rank 
to fail. The pool of standby daemons not in replay count towards 
any file system count. 

Recovery 

1. “Imperative Recovery” feature allows the MGS 
to actively inform clients when a target restarts 
after a failure, failover, or other interruption to 
speed up recovery. 

2. “Metadata Replay” provides information on 
recovering from a corrupt file system. 

3. “Commit on Share” provides information on 
resolving orphaned objects, a common issue 
after recovery 

4. Snaphshots and Backups 

a. Metadata damage and repair: If a file system has inconsistent or 
missing metadata, it is considered damaged. You may find out about 
damage from a health message, or in some unfortunate cases from 
an assertion in a running MDS daemon. Metadata damage can result 
either from data loss in the underlying RADOS layer (e.g. multiple 
disk failures that lose all copies of a PG) or from software bugs. 
CephFS includes some tools that may be able to recover a damaged 
file system, but to use them safely requires a solid understanding of 
CephFS internals. 

b. Data pool damage (files affected by lost data PGS): If a PG is lost in 
a data pool, then the file system will continue to operate normally, 
but some parts of some files will simply be missing (reads will 
return zeros). Files are split into many objects, so identifying which 
files are affected by the loss of particular PGs requires a full scan 
overall object IDs that may exist within the size of a file. This type 
of scan may be useful for identifying which files require restoring 
from a backup. 

 
Table 3 presents a qualitative comparison between Lustre 

and Ceph file systems. It covers various generic aspects like 
programming language used, stable production version 
release date, website, data-storage, data-consistency, etc. The 
basic building block for the storage in both systems is object 
storage. Being a parallel filesystem Lustre uses data-striping 
to stripe data across multiple OSTs. Ceph is a distributed file 
system and uses CRUSH algorithm to decide data storage. 

Ceph uses a subset of Lustre fault tolerance mechanisms 
which is active/passive strategy. Lustre offer various types of 
recovery mechanism over Ceph. The placement strategy used 
by CRUSH helps in maintaining data-consistency with data-
scrubbing mechanisms while in Lustre it requires more tools 
and methods to achieve data-consistency. 

Table 4 presents the comparison between Lustre and Ceph file 
systems using broad feature classification. The features like. 



 Internet of Things and Cloud Computing 2022; 10(1): 12-28 23 
 

Performance: To characterize a file system’s internal 
techniques that are used for achieving high performance. 

Reliability: The internal techniques and approaches that 
make possible to oppose against unfavourable factors (for 
example, Sudden Power-Off) and to keep data in consistent 
state. 

Security: To characterize file system’s approaches and 
techniques that to protect against data corruption or lost 

because of any malicious actions. 
Scalability: The ability of a system, network, or process, to 

handle a growing amount of work in a capable manner or its 
ability to be enlarged to accommodate that growth. 

Architectural: To characterize a file system’s design and 
describe the vision of principal architectural approaches that 
to define a file system’s components and essence of internal 
interactions. 

Table 4. Feature classification for Ceph and Lustre filesystems [38]. 

 Ceph Lustre 

ARCHITECTURAL FEATURES 
(These features characterize a file system’s 
design and describe the vision of principal 
architectural approaches that to define a 
file system’s components and essence of 
internal interactions between of its) 

(1) Systems at the petabyte scale are inherently dynamic; 
(2) Decouple data and metadata operations; 
(3) Adaptive distributed metadata cluster architecture; 
(4) Clients; 
(5) Near-POSIX file system interface; 
(6) Cluster of OSDs (Object Storage Devices); 
(7) Metadata servers cluster; 
(8) Dynamic distributed metadata management; 
(9) Reliable Autonomic Distributed Object Store (RADOS); 
(10) Extent and B-tree based Object File System (EBOFS). 

(1) Cluster; 
(2) Management server (MGS); 
(3) Object-based filesystem; 
(4) Metadata servers (MDSs); 
(5) Object storage servers (OSSs); 
(6) Clients; 
(7) Object Storage Target (OST); 
(8) Standard POSIX I/O system calls; 
(9) Metadata Target (MDT); 
(10) RAID 0 pattern (data is “striped” 
across a certain number of objects). 

PERFORMANCE FEATURES 
(These features characterize a file system’s 
internal techniques that are used for 
achieving high performance) 

(1) Controlled Replication Under Scalable Hashing (CRUSH); 
(2) Dynamic hierarchical partition; 
(3) Optimization for the most common metadata access 
scenarios; 
(4) No file allocation metadata is necessary; 
(5) In-memory cache; 
(6) Lazily flushed journals strategy; 
(7) Inodes embedded in directory; 
(8) Partitioning the directory hierarchy across multiple nodes; 
(9) Knowledge of metadata popularity; 
(10) Hashing content of large or heavy load directories by file 
name across the cluster; 
(11) Specially optimized low-level disk scheduler; 
(12) B-tree service of EBOFS. 

(1) Modified version of the ext4 journaling 
file system; 
(2) Lustre supports mmap() file I/O; 
(3) Lustre uses RAID-0 striping and 
balances space usage across OSTs; 
(4) MPI ADIO layer that optimizes 
parallel I/O; 
(5) Ability to stripe data across multiple 
OSTs in a round-robin fashion. 

SYNCHRONIZATION FEATURES 
(Synchronization refers to one of two 
distinct but related concepts: 
synchronization of processes, and 
synchronization of data. Synchronization 
features provide file system’s internal 
techniques and architectural primitives 
being used to implement data 
synchronization) 

(1) Object locks; 
(2) O_LAZY flag (allows applications to explicitly relax the 
usual coherency requirements for a shared-write file); 
(3) No metadata locks or leases are issued to clients; 
(4) Capabilities (specifying which operations are permitted); 
(5) Shared long-term storage and carefully constructed 
namespace locks. 

(1) In a cluster most operations are atomic; 
(2) Distributed lock manager (DLM); 
(3) Two types of request: lock related and 
data related. 

RELIABILITY FEATURES 
(Reliability features are internal techniques 
and approaches that make possible to 
oppose against unfavourable factors (for 
example, Sudden Power-Off) and to keep 
data in consistent state) 

(1) Commit metadata updates to disk; 
(2) Lazily flushed journals of MDS; 
(3) Quick rescan of MDS journal by any node in the case of 
MDS failure; 
(4) OSDs self-report; 
(5) Active monitoring of OSDs peers in PG; 
(6) OSD liveness (OSD reachable + assigning data by 
CRUSH); 
(7) Object version number + PG’s log of recent changes; 
(8) Fast Recovery Mechanism (FaRM). 

(1) Checksum of all data sent from the 
client to the OSS; 
(2) Distributed file system check (lfsck) 

HIGH-AVAILABILITY FEATURES 
(High-availability features provide the 
ability of the user community to access the 
system, whether to submit new work, 
update 
or alter existing work, or collect the results 
of previous work) 

(1) Cluster of OSDs; 
(2) Uniform striping and distribution strategy; 
(3) Placement Groups (PG) + Controlled Replication Under 
Scalable Hashing (CRUSH); 
(4) Failure is the norm; 
(5) Primary-copy replication; 
(6) OSD monitor 

(1) Active/active failover using shared 
storage partitions for OSS targets (OSTs); 
(2) Active/passive failover using a shared 
storage partition for the MDS target 
(MDT); 
(3) High availability (HA) manager; 
(4) Multiple mount protection (MMP) 
provides integrated protection from errors; 
(5) Availability is accomplished by 
replicating hardware and/or software; 
(6) A pair of servers with a shared resource 



24 Priyam Shah et al.:  Survey the Storage Systems Used in HPC and BDA Ecosystems  
 

 Ceph Lustre 

NAMESPACE FEATURES 
(These features represents special 
approaches and techniques that to make 
possible to represent data by means of 
hierarchy of files or in any other way.) 

(1) CRUSH; 
(2) Dynamic Subtree Partitioning; 
(3) MDS cluster; 
(4) Object names simply combine the file inode number and 
the stripe number; 
(5) Directory’s content distribution strategy; 
(6) Ranges of inode numbers; 
(7) Auxiliary anchor table (rare inode with multiple hard 
links); 
(8) Single authoritative MDS; 
(9) Popularity of metadata; 
(10) Three groups of inode contents with different consistency 
semantics (security, file, and immutable). 

(1) Single, coherent, synchronized 
namespace; 
(2) POSIX-compliant filesystem; 
(3) Extended attribute (EA) describes the 
mapping between file object id and its 
corresponding OSTs; 
(4) Each filename points to an inode. The 
inode contains all of the file attributes. 

SECURITY FEATURES 
(Security features characterize file system’s 
approaches and techniques that to protect 
against data corruption or lost because of any 
malicious actions.) 

(1) Capabilities (specifying which operations are permitted) 

(1) TCP connections only from privileged 
ports; 
(2) Group membership handling is server-
based; 
(3) ACLs 

SCALABILITY FEATURES 
(Scalability is the ability of a system, 
network, or process, to handle a growing 
amount of work in a capable manner or its 
ability to be enlarged to accommodate that 
growth.) 

(1) Object-based storages; 
(2) Object names are constructed using the inode number, and 
distributed to OSDs using CRUSH; 
(3) MDS response content; 
(4) Future metadata operations are directed at the authority 
(for updates) or a random replica (for reads) based on the 
deepest known prefix of a given path 

(1) A new OSS with OSTs can be added to 
the cluster without interrupting any 
operations 

NETWORK FEATURES 
(This class of features describes 
architectural solutions that to make file 
system services available by means of 
using different networkoriented 
technologies.) 

- 

(1) Remote Direct Memory Access 
(RDMA) for Infiniband (OFED); 
(2) Re-exported using NFS or CIFS (via 
Samba); 
(3) All client/server communications in 
Lustre are coded as an RPC request and 
response; 
(4) Lustre Networking (LNET). 

 

Synchronization: To provide file system’s internal 
techniques and architectural primitives being used to 
implement data synchronization. 

High-availability: To provide the ability of the user 
community to access the system, whether to submit new 
work, update or alter existing work, or collect the results of 
previous work. 

Namespace: This feature represents special approaches and 
techniques to make possible to represent data by means of 
hierarchy of files or in any other way. 

Network: To describe architectural solutions to make file 
system services available by means of using different 
network-oriented technologies. 

Based on feature listing we can see that Ceph provides 
more strategies for namespace, reliability, and scalability 
management. Lustre provides better availability, network, 
and performance features. 

Table 5 maps key design goals and features of Lustre and 
Ceph file systems. The case-studies of various companies 
using it, helps for making a logical decision while picking a 
storage system with similar design goal or feature aspects in 
HPC ecosystem. Ceph is suitable for high-latency 
applications, while Lustre is suitable for low-latency 

applications. 
Table 6 presents qualitative comparison of HDFS and 

CockroachDB. The DB Engine scores clearly convey why 
HDFS is one of the prominent choices in BDA ecosystem. 
The production release for both the storage systems conform 
that CockroachDB is a newer system and uses NewSQL 
techniques. These techniques need more time to have stable 
build as they are still in early phase. The basic storage unit of 
both the systems are key-value for CockroachDB and blocks 
for HDFS. CockroachDB support automated scaling which is 
a big relief over manual scaling. With the use of Parallel 
commits, CockroachDB achieves its ACID properties in 
distributed environment, while HDFS simply uses one-copy-
update semantics. Recovery mechanism provided by HDFS 
are more sophisticated. 

Table 7 maps key design goals and features of HDFS and 
CockroachDB. The variety of use-case mapping these systems 
helps for making a logical decision while picking a storage 
system with similar design goal or feature in a BDA ecosystem. 
CockroachDB is well-suited for systems requiring ACID 
compliance, strong consistency, and minimal downtime. HDFS 
is well-suited for storing large-amount of data and variety of 
data-formats, strong fault-tolerance and recovery needs. 
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Table 5. Design Goals vs Key Features of Lustre and Ceph File Systems [31, 38]. 

Filesystem Design Goals Top 3 Features Case Studies 

Ceph 

(1) To be scalable 
file system; 
(2) To utilize a 
highly adaptive 
distributed 
metadata cluster 
architecture; 
(3) To be a highly-
available file 
system 

1. Namespace features (These features represents special approaches and techniques to 
represent data by means of hierarchy of files or in any other way) 

a. CRUSH: (Controlled, Scalable, Decentralized Placement of Replicated Data) 
Algorithm uses intelligent data replication to ensure resiliency, which is better suited to 
hyper-scale storage. 

b. Single authoritative MDS and MDS cluster; 
c. Object names simply combine the file inode number and the stripe number; 
d. Directory’s content distribution strategy; 

2. Reliability features 
a. Commit metadata updates to disk; 
b. Quick rescan of MDS journal by any node in the case of MDS failure; 
c. OSDs self-report; 
d. Active monitoring of OSDs peers in PG; 

3. Performance optimization features 
a. Dynamic hierarchical partition: Partitioning the directory hierarchy across 

multiple nodes; 
b. Optimization for the most common metadata access scenarios: using In-memory 

cache (a data storage layer that sits between applications and databases to deliver 
responses with high speeds by storing data from earlier requests or copied directly 
from databases); 

c. Inodes embedded in directory; Inodes are a data structure in a Unix-style file 
system that describes a file-system object such as a file or a directory; 

d. Hashing content of large or heavy load directories by file name across the cluster; 
e. - B-tree service of EBOFS. (an extent and B+tree based object file system, allows 

arbitrarily sized objects and preserves intra-object locality of reference by allocating 
data contiguously on disk) 

1. US Signal scales its 
Storage As A Service 
(STaaS) offering to help 
meet growing demand 
2. Capturing flight data 
at the edge, for quick 
processing in 
geographically dispersed 
data centers 
3. THG Ingenuity’s 
mission: to build a state 
of the art platform that 
not only supports, but 
accelerates their 
ecommerce business 

Lustre 

(1) To be scalable 
for use in large 
computer 
clusters; 
(2) To support a 
variety of high 
performance, low 
latency networks; 
(3) To tune the file 
I/O to specific 
application 
requirements; 
(4) To optimize 
parallel I/O. 

1. High-availability features 
a. Active/active failover using shared storage partitions for OSS targets (OSTs); 
b. Active/passive failover using a shared storage partition for the MDS target 

(MDT); 
c. High availability (HA) manager; 
d. Multiple mount protection (MMP) provides integrated protection from errors; 
e. Availability is accomplished by replicating hardware and/or software; 

2. Performance optimization features 
a. Modified version of the ext4 journaling file system; 
b. Lustre supports mmap() file I/O: multiple processes accessing data in a read only 

fashion from the same file; 
c. Lustre uses RAID-0 striping and balances space usage across OSTs; 
d. MPI ADIO (Abstract-Device Interface for I/O) layer that optimizes parallel I/O; 
e. Ability to stripe data across multiple OSTs in a round-robin fashion. 

3. Network features 
a. Remote Direct Memory Access (RDMA) for Infiniband (OFED); 
b. Re-exported using NFS or CIFS (via Samba); 
c. All client/server communications in Lustre are coded as an RPC request and 

response; 
d. - LNet and LND: LNet layer is connectionless, asynchronous, and does not verify 

that data has been transmitted while the LND layer is connection-oriented and 
typically does verify data transmission. 

1. Maxar Uses Amazon 
FSx for Lustre to Deliver 
Forecasts Weather 
2. Toyota Research 
Institute (TRI) collects 
and processes large 
amounts of sensor data 
from their autonomous 
vehicles (AV) test drives 
using Amazon FSx for 
Lustre. 
3. Netflix VFX team 
uses Amazon FSx for 
Lustre. 

Table 6. Qualitative comparison of CockroachDB and HDFS. 

 CockroachDB HDFS 

Type NewSQL Storage Engine (Distributed FS) Distributed File System 
Availability Open Source, Community Edition, Commercial Edition Open Source, Commercial Edition 
Developed By Spencer Kimball at cockroach labs in 2014 Doug Cutting at Apache Software Foundation in 2006 
Who is using? DoorDash, DevSisters, MUX, etc Uber, Airbnb, Netflix, etc 
Written in Go Java 
Primary database 
model 

Relational DBMS 
Wide column store in HBase; 
Relational DBMS in Hive; 

DB-engines Ranking 58 / 353 
25 / 353 HBase; 
14 / 353 Hive; 

Website www.cockroachlabs.com 
hbase.apache.org 
hive.apache.org 

Storage-type Key-Value Pairs Blocks 



26 Priyam Shah et al.:  Survey the Storage Systems Used in HPC and BDA Ecosystems  
 

 CockroachDB HDFS 

User-access controls Role-based access control 
Access Control Lists (ACL) for RBAC, integration with 
Apache Ranger for RBAC & ABAC 

Scalability Horizontal, automated scaling Horizontal 

Consistency 
full support for ACID transaction semantics using Parallel 
Commits 

one-copy-update-semantics -all clients see contents of file 
identically as if only one copy of file existed. 

Replication methods horizontal partitioning (by key range) Sharding 

Partitioning methods Multi-source replication using RAFT 
Multi-source replication 
Source-replica replication 

MapReduce Support no yes 
Foreign keys support yes no 
Failures Offline Nodes; NameNode failures, DataNode failures, and network partitions 

Fault Tolerance 

Replication using RAFT protocol - It is a consensus protocol–
–an algorithm that makes sure that your data is safely stored 
on multiple machines, and that those machines agree on the 
current state even if some of them are temporarily 
disconnected. 
Rebalancing Nodes; 

Heartbeats and Re-Replication; 
Data Integrity - To verify data corruption perfrom checksum 
Copy of FSImage - Incase NameNode fails, load copy of 
FSImage on new NameNode 

Recovery Snapshots 

lease recovery - used, If a node having lock/lease for a file dies; 
block recovery - used, if the last block of the file being written 
is not propagated to all DataNodes in the pipeline; 
pipeline recovery - used, if performing write pipeline 
operations, some DataNodes in the pipeline fail.; 

Table 7. Design Goal vs Key Features of HDFS and CockroachDB. [38] 

DB Engines Design Goals Key Features Applications 

CockroachDB 

to support for ACID 
transactions; 
to have horizontal 
scalability; 
to have strong 
consistency; 
to have survivability i.e. 
to have minimal latency 
disruption and no 
manual intervention with 
disk, machine, rack, and 
even datacenter failures. 

a. EFFORTLESS SCALE: Scale your applications, not operational 
complexity. CockroachDB scales without manual operation, eliminates 
overhead associated with manual sharding, and balances server 
utilization to reduce costs. 

b. BULLETPROOF RESILIENCE: Ensure your apps are always on and 
available. CockroachDB survives system failures without interruption, 
reduces the need for complex and costly backup configurations, and 
eliminates the risk of losing data. 

c. ENSURED CONSISTENCY: Guarantee transactional consistency in 
distributed SQL. CockroachDB ensures all your data is always correct 
and up-to-date, guarantees serializable isolation, and applies a cost-
based optimizer and query planner to distributed workloads. 

d. GEO-LOCALITY: Give your data a location. CockroachDB is the only 
database that assigns data to a location allowing you to reduce latencies, 
move data close to your customers, and remain globally compliant. 

System of record (financial 
ledger, inventory 
management, transaction 
record), 
identity access management 
(IAM), 
metadata layer, 
general purpose DB 

HBase 

to store and process large 
amounts of data; 
to have random access 
storage and retrieval data 
platform; 
to store variety of data 
storage formats; 
to use map and reduce; 
to have auto failover and 
reliability; 

a. No single point of failure ensures very high availability with multiple 
customers having achieved 100% availability on a 3+ year lookback 
basis. 

b. Operational simplicity for lowest total cost of ownership. 
c. Best-in-class scalability and performance of NoSQL platforms. No need 

for managing and redesigning shards as the cluster grows. 
d. Additional modalities with add-on applications: Apache Phoenix 

enables a SQL interface, OpenTSdb enables Time series operations, 
JanusGraph enables a scale-out graph interface and GeoMesa provides a 
geo-spatial interface. 

Internet of Things (IOT), 
fraud detection applications, 
recommendation engines, 
product catalogs and 
playlists, 
messaging applications, 
customer 360 applicaitions, 
web applications, 
machine learning model 
serving. 

 

5. Conclusion 

Storage systems are a combination of both hardware 
storage devices and software file systems which serves the 
purpose of all storage related issues. There are various 
applications of HPC and BDA ecosystems like Modular 
Ocean Model, mpiBLAST, ECOlogical model, social media, 
Sensor Data, etc. Such applications can be broken down into 
smaller subsets of problems. The design goals can be 
evaluated for those problems and by aggregating and 
comparing those design goals with features provided by 
available file system a logical decision can be made on 

selecting an existing filesystem or creating a newer 
filesystem based on the needs of the application. In our paper 
we have mapped design goals of file systems to various key 
features and have supported them with use-cases being used 
in industry. 

Based on the qualitative comparison we can comment that 
the object-based storage and distributed file systems are basic 
similarities among the filesystems today. For HPC ecosystem 
still Lustre is one of the most prominent choices as per IO500 
SC’21 results [26, 27]. Hadoop (HDFS) is prominent choice 
for many Big-Data applications as per DB Engines Ranking 
[39]. 

Ceph still has some drawbacks. Among them is the 
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limitation of only being able to deploy one CephFS per 
cluster and the current test phase of reliability on real-world 
use-cases. Some features and utilities are still in an 
experimental phase as well. For instance, usage of snapshots 
could cause client nodes or MDSs to terminate unexpectedly. 
In addition, Ceph is designed with HDDs as its basis and 
needs improvements in performance when disks are replaced 
with SSDs, and the data access pattern is random [23]. HDFS 
based storage solutions will provide low latency over cloud 
deployed CockroachDB solution [29]. 

We have compared four storage systems where in two 
storage system from each environment. There are hundreds 
of such file system which need similar assessment. Finally, it 
comes down to the storage system architect to understand the 
design goals of the application for his problem and to map it 
with the best available features and solution in the market 
with proven performance. 

6. Future Developments 

On the hardware side, NVRAM storage will likely 
transform how we build storage systems. On the one hand, 
NVRAM can improve the capabilities to record large amounts 
of data at the pace required to be useful for later analysis tasks. 
On the other hand, NVRAM can dramatically simplify storage 
systems, which currently add complexity to every effort for 
relatively modest performance improvements. [2] 

There is a wide variety of new and upcoming approaches 
for file and storage systems. Their motive is optimization and 
improvement is highly required due to the challenges 
regarding managing the vast amount of data from I/O-
intensive applications. The HPC community aims to relax the 
strict POSIX semantics without losing the support for legacy 
applications. New approaches like DAOS: It will support 
performing I/O in a scalable way, so that multiple processes 
can perform asynchronous write operations without having to 
worry about consistency problems [35]. Týr is a blob storage 
system with support for transactions; it provides blob storage 
functionality and high access parallelism, which is enough 
for converging some applications in HPC and BDA like 
BLAST, MOM, ECO-HAM and Ray Tracing applications 
[1], SoMeta: Scalable Object-Centric Metadata Management 
(SoMeta) is intended for future object-centric storage 
systems, providing the corresponding metadata infrastructure. 
A distributed hash table is used to organize metadata objects 
that contain the file system metadata [36]. 

Storing bigdata in a decentralized storage is one of the 
solutions for ever-growing data. In order to mitigate the 
challenges like scalability and transaction speeds in 
decentralized storage, techniques like swarming [38] and 
sharding [37] are being used. Partitioning of databases along 
logical lines is referred to as sharding. The decentralized 
model ensures the storage of shards together. Moreover, a 
unique partition key is used by a dedicated decentralized 
application to access the shards. Besides this, swarming is 
used to enable the collective storage of shards. Data is stored 
and managed by creating a large group of nodes, which is 

called a swarm. This group of nodes is similar to the network 
of nodes created for blockchain. Possibly decentralized 
storage can be a global solution later in the future for big data 
storage systems. [39] 
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